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Foreword 

The importance of fault-tolerance and reliability issues in real-time computer 
control systems might easily be appreciated in the context of the ever increasing use 
of computers in application areas such as control of hazardous chemical plants and 
nuclear reactors in process industry, battle management and weapon delivery in 
defence, intensive care and diagnostic systems in health care and control systems 
for air and high-speed ground transportation. The use of computers in such 
systems, for fault-detection and diagnosis, and system reconfiguration, has the 
potential of dramatically improving the operational effectiveness of real-time 
systems. The computer system being the principal component of monitoring and 
control equipment, its failure could result in disastrous consequences, and hence, 
such a system should be installed only after adequate demonstration of its required 
level of reliability. 

Real-time computer control systems have three major constituents: the physical 
plant, the computer system and the instrumentation system that interfaces the plant 
with the computer. The human operator also plays a crucial role especially in 
emergencies. Equipment failures, malfunctions of sensors, actuators, computer 
hardware and software, and operator lapses may cause major damage to the 
system, endanger human life and may turn the environment toxic. Systematic 
design of reliable computer control systems is therefore an important and a very 
challenging task. The system has to maintain optimal performance during normal 
operation, and must also cope with randomly occurring emergencies during which 
the plant conditions are hostile, by taking corrective actions with strict real-time 
deadlines. 

A preliminary failure cause-consequence analysis should be performed for the 
computer controlled system to identify the potential hazards associated with 
failures in each of the subsystems and the human operator. Such an analysis would 
reveal the criticality of each of the faults. Hazard analysis techniques based on 
Failure modes and effects analysis, Event trees, Fault trees. Digraphs, and 
Cause-consequence diagrams are useful for this purpose. A fault-diagnostic system 
is then designed to detect, diagnose and compensate for these failures and is 
implemented via software along with other monitoring and control functions. 
Expert systems, Kalman filters, observers, parity space techniques, fault trees, 
detection filters etc. are used in the design of the fault diagnostic system. These 
algorithms are implemented using fault-tolerant hardware and software. The 
design of fault-tolerant systems is thus a complex problem requiring expertise from 
a variety of disciplines. 

In this special issue, we concentrate on the reliability and fault-tolerance issues in 
real-time computer systems. We organise the papers in four sections: 

(i) Fault-tolerant Software 
(ii) Fault-tolerant Computer Architectures 

(iii) Performance Modelling of Fault-tolerant Systems 
(iv) Applications 
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2 Foreword 

1. Fault-tolerant software 

In real-time systems, software is the key to the performance and error-free 

operation of the system. Real-time software is a special class of software with 

certain unique characteristics, such as operation in unpredictable and asynchronous 

environments and response generation according to strict deadline schedules. 

Reliability, safety and fault-tolerance are desirable features of real-time 

software. Reliability is the probability that the system will perform its intended 

function for a specified period of time under a set of specified environmental 

conditions. Safety is the probability that conditions leading to an accident do not 

occur whether or not the intended function is performed. In general, reliability 

requirements are concerned with making the system failure-free whereas safety 

requirements are concerned with making it accident-free. Fault-tolerance is the 

survival attribute of the real-time software system. The software should provide 

correct results in the face of various failures. A major technological concern for the 

coming years is the ever widening gap between the demand for high quality, robust 

software and its supply. This is of utmost relevance in the Indian context since there 

are concerted efforts underway to produce control software for life critical systems 

including satellite launch vehicles, high-tech combat aircraft, C3 systems, nuclear 

power plants and hazardous chemical processes. 

There are four papers in this issue which focus on reliable and fault-tolerant 

software. The first paper by Shrivastava is a didactic exposition on the various 

issues in the design and implementation of fault-tolerant software. He presents a 

methodology for constructing software modules that can tolerate both expected 

and unexpected faults including design faults. Following this, the design of 

fault-tolerant algorithms - algorithms that incorporate software techniques for 

tolerating hardware faults - is discussed. The use of these techniques is illustrated 

in replicated distributed processing and for constructing robust distributed 

programs. 

The survey paper on software dependability by Sarma presents a case for 

developing a unified framework for dependability. Dependability is a generic 

concept that has attracted wide attention recently and subsumes various quality 

factors such as reliability, availability, maintainability, complexity and safety. The 

paper also surveys the models and methods for software reliability which is the 

best-known dependability measure and discusses the important notion of software 

fault-tolerance. 

Database consistency is a fundamental requirement of a database system. The 

paper by Bhargava & Lilien brings out comprehensively the role of fault-tolerant 

software in maintaining database consistency in the presence of faults and restoring 

consistency after site crashes and network partitionings. Besides, the paper also 

discusses the verification of integrity assertions which is fundamental for ensuring 

the semantic integrity of a database. 

The fourth paper in this section, by Patnaik & Balaji, is a survey paper on an 

important class of fault-tolerant distributed computing systems. These systems are 

designed to tolerate Byzantine faults which could correspond to any arbitrary 

behaviour on the part of hardware or software components of the system. The 

authors discuss agreement problems, agreement protocols, and their applications, 

in the context of Byzantine-resilient systems. 
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2. Fault-tolerant computer architectures 

Fault-tolerance is achieved in computer systems by introducing redundant or spare 

processors and mempry elements, and capabilities for automatic fault-diagnosis 

recovery and reconfiguration. With the rapid progress made in VLSI technology 

and in semiconductor memories, high performance processor and memory units 

are available at low cost. Distributed computer systems which are interconnections 

of high performance processors, memory elements and I/O units by means of a 

communication network have natural fault-tolerance attributes and, by adding 

capabilities of fault-diagnosis and reconfiguration, they can be made ultra-reliable. 

Distributed computing systems are broadly divided into multiprocessor and 

multicomputer systems. A multiprocessor system consists of a number of proces¬ 

sing elements connected to a number of memory modules through an interconnec¬ 

tion network. Three types of interconnection topologies have been proposed in the 

literature. They include crossbar, multistage interconnection networks and multi¬ 

ple bus organizations. In multicomputer systems, each processor has its own 

memory and inter-processor communication is achieved by a message/packet 

switching protocol. Several structures including loops, trees, full connections and 

hypercubes have been proposed. Studies relating to performance and reliability 

computations are needed to evaluate these distributed computer architectures. 
In this volume, we have four papers dealing with fault-tolerant computer 

architectures. Biswas & Srinivas present a review of various approaches toward 

tolerating hardware faults in multiprocessor systems. A survey of various models, 

techniques and methods for fault diagnosis is provided in this paper. Reconfigur- 

able architectures and fault-tolerant VLSI processor arrays are also considered. 

Raghavendra & Anujan Varma consider reliability and fault-tolerance issues in 

the design and analysis of multistage interconnection networks (min) for multi¬ 

processors. They consider multistage networks which are typically built for N inputs 

and N outputs using 2x2 switching elements and log2/V stages. Further, several 

approaches for achieving fault-tolerance in MIN are discussed and methods for 

reliability analysis of min are explained. 

Reliability and fault-tolerance evaluation of multiprocessor and multicomputer 

architectures with emphasis on graceful degradation is considered by Das & 

Bhuyan. They define two measures, reliability and performance availability, to 

characterize and evaluate multiprocessor and multicomputer architectures. Band¬ 

width availability and computation communication availability are used to quantify 

performance availability of multiprocessors and multicomputers. To evaluate the 

reliability and performance availability, they describe two models: a bus-oriented 

model and a switch-oriented model. The former is useful for crossbar and multiple 

bus multiprocessors and the latter for all types of multiprocessors. 

Reliability calculation in large computer networks is an issue that abounds in 

computational problems and, in general, the problem complexity is exponential. 

Aggarwal presents a high-speed approximate method for reliability analysis of 

computer communication networks using clustering methods. Fie also defines a 

reliability index, an approximate measure of the overall reliability of the system, 

that can be easily incorporated into reliable system design. 



4 Foreword 

3. Performance modelling of fault-tolerant systems 

One of the very important questions that arises when considering fault-tolerant 
systems is whether the system would perform the intended function at the specified 
levels of performance. Such a quantitative performance evaluation is required at 
each stage of the system life cycle: while evaluating alternative designs, while 
verifying a particular prototype, while guiding redesign and when the system is in 
operation. 

Three methods are available for fault-tolerant system performance: measure¬ 
ment, simulation performance modelling and analytic performance modelling. 
Performance measurement is possible once a system is built, has been instrumented 
and is in operation. There are three major drawbacks of this method: first, 
performance figures relate to the specific system architecture under its current 
work load, second, measurement is not feasible during the design and development 
stages of the system, and third, measuring performance in a complex system 
environment is tedious and costly. 

The most attractive approach to fault-tolerant system performance evaluation is 
through modelling. Fault-tolerant systems consist of a set of redundant resources: 
data, hardware and software elements and a set of randomly arriving tasks compete 
for these resources. The resources are prone to random errors and failures. Thus 
fault-tolerant systems are discrete-event dynamical systems where events occur at 
random time instants and the performance measures of interest include: resource 
utilization, contention for resources, response times, performance degradation, 
degree of fault-tolerance etc. 

The tools of discrete-event simulation could be employed for simulation 
performance modelling of discrete-event dynamical systems. Here simulation 
models are driven by random input sequences and produce random output 
sequences. Statistical output analysis is required to interpret results of simulation 
models. Analytical models of discrete-event dynamical systems include Markov 
chains, queueing networks and stochastic Petri nets. All the analytical techniques 
lead to large-size models and their solution requires computer-aided analysis. User 
friendly computer-aided simulation and analytical performance modelling techni¬ 
ques would help the designer to concentrate on higher level decision-making rather 
than get bogged down with myriad computational issues. 

In this special issue, we have three papers on performance modelling of 
fault-tolerant computer systems. Narayan Bhat & Kavi provide a critical overview 
of the approaches to reliability modelling. They show that Petri nets and dataflow 
graphs facilitate reliability analysis of complex systems. Narahari & Viswanadham 
present the performance evaluation of a fault-tolerant real-time multiprocessor 
(ftmp) using stochastic Petri nets. They develop four such models featuring various 
degrees of FTMP details and compute various performance measures including bus 
contention, processor utilization and waiting times. Trivedi & Dugan discuss the 
seven major issues in computer-aided reliability modelling and analysis of complex 
fault-tolerant systems and discuss the recent progress made in each of these seven 
areas. 
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4. Applications 

We have three application-oriented papers in this issue, the first two dealing with 
spacecraft on-board fault-tolerant computers and spacecraft fault-tolerant control 
systems and the third one with nuclear reactor safety issues. The first paper in this 
section, by Basu et al, describes the on-board fault-tolerant computer system for 
ISRO’s Augmented Satellite Launch Vehicle. They describe the architectural 
attributes of the on-board computer and the details of software testing carried out 
in order to ensure reliable operation. 

The second paper in this section deals with another important application 
area-spacecraft control systems. Spacecraft have to function continuously without 
interruptions and without maintenance for periods of 7-15 years. The spacecraft 
control system has to detect, diagnose and estimate failures in various components 
and reconfigure the control system. This fault-tolerance feature has to be 
incorporated keeping in view the limitations on weight, power and computational 
facilities. Murugesan & Goel present a brief description of the attitude control 
system and highlight essential features of the fault-tolerant control system. They 
also present algorithms for fault detection, identification and reconfiguration for 
various elements of the spacecraft control system. 

Safety in nuclear power plants is an important and widely discussed issue. The 
Three-mile Island and Chernobyl accidents and their consequences have brought to 
focus the deficiencies in the current safety control systems. Sri Ram & Iyer discuss 
safety issues in the CANDU type of nuclear reactors. They review the recent work on 
station blackout, operational transients, and small and large break loss of coolant 
accidents. They also stress on the nuclear safety culture to be practised by the 
operators in all operating nuclear power plants. 

Taken together, the fourteen representative papers of the issue help the reader 
to obtain a global view of the design of real-time systems with specifications on 
reliability and fault-tolerance. I hope that this special issue will stimulate further 
interest in this area leading to more reliable and safer real-time systems. 

I would like to express my sincere thanks to 
— the authors for their enthusiastic response to my invitation, 
— the reviewers for their help in providing me with prompt and critical reviews, 
— Mr Y Narahari, for his invaluable and cheerful help in a variety of ways, 
— Prof. R Narasimha, Chairman, Editorial Board, Sadhana for his constant help 

and encouragement. 
— Ms K Shashikala, for editorial help. 

October 1987 N VISWANADHAM 
Guest Editor 





A tutorial on the principles of fault tolerance 

S K SHRIVASTAVA 

Computing Laboratory, University of Newcastle upon Tyne NE1 7RU, 

UK 

Abstract. The paper begins by examining the four aspects of fault 

tolerance - error detection, damage assessment, error recovery and 

fault treatment - and describes how these aspects can be incorporated 

in systems. Following this, a methodology for the construction of robust 

software systems is presented, covering the topics of design fault 

tolerance and software implemented fault tolerance. Some aspects of 

modelling faulty behaviour of components is presented and the notion 

of a family of fault-tolerant algorithms is introduced. 

Keywords. Error recovery; fault tolerance; reliability; exception 

handling; fault classification; atomic actions; replicated processing; real 

time systems. 

1. Introduction 

A reliable computing system must be capable of providing normal services in the 

presence of a finite number of component failures. Faults within a system cause its 

failure. These faults could be present in either the components of the system or in its 

design. The paper examines in §2 the nature of systems and their failures and 

presents a methodology for the construction of robust software modules - modules 

capable of tolerating both expected and unexpected faults. The next section 

discusses design fault tolerance and the subsequent section discusses software 

implemented fault tolerance, describing the principles of constructing algorithms 

capable of tolerating component failures of specified types. Conclusions from our 

study are presented in the last section. 

2. Systems and their failures 

Following Anderson & Lee (1981, 1982), a system is defined to consist of a set of 

components which interact under the control of an algorithm (or design). The 

components of a system are themselves systems as is the algorithm (design). The 

phrase ‘algorithm of a system’ is used here to refer to that part of the system which 

actually supports the interactions of the components. 

The internal state of a system is the aggregation of the external states of all its 

components. The external state of a system is an abstraction of its internal state. 

7 



8 S K Shrivastava 

During a transition from one external state to another, the system may pass 
through a number of internal states for which the abstraction, and hence the 
external state is not defined. We assume the existence of an authoritative 

specification of behaviour for a system which defines the external states of the 
system, the operations that can be applied to the system, the results of these 
operations and the transitions between external states caused by these operations. 

In our everyday conversations we tend to use the terms ‘fault’, ‘failure’ and 
‘error’ (often interchangeably) to indicate the fact that something is ‘wrong’ with a 
system. However, in any discussion on reliability and fault tolerance, a little more 
precision is called for to avoid any confusion. Failure of a system is said to occur 
when the behaviour of the system first deviates from that required by the, 
specification. The reliability of the system can then be characterized by a function 
R(t) which expresses the probability that no failure of the system will have occurred 
by time t. We term an internal state of a system an erroneous state when that state is 
such that there exist circumstances (within the specification of the use of the 
system) in which further processing by the normal part of the system will lead to 
failure. The phrase ‘normal part of a system’ is used here to admit the possibility of 
introducing in the system extra components and algorithms to specifically prevent 
failures. Such additions are referred to as the redundant (exceptional or abnormal) 

part of the system. The term ‘error’ is used to designate that part of the internal 
state that is ‘incorrect’. The terms ‘error’, ‘error detection’ and ‘error recovery’ are 
used as casual equivalents for ‘erroneous state’, ‘erroneous state detection’ and 
‘erroneous state recovery’. 

Next we might ask why a system enters an erroneous state (one that leads to a 
failure). The reason for this could be either the failure of a component or the design 
(or both). Naturally, a component (or design) being a system, may itself fail 
because of its internal state being erroneous. It is often convenient to be able to talk 
about causes of system failure without actually referring to internal states of the 
system's components and design. We achieve this by referring to the erroneous 
state of a component or design as a fault in the system. A fault could either be a 
component fault or a design fault; so a component fault can result in an eventual 
component failure and similarly a design fault can lead to a design failure. Either of 
these internal (to a system) failures will cause the system to go from a valid state to 
an erroneous state; the transition from a valid to an erroneous state is referred to as 
the manifestation of a fault. 

To summarize: a system fails because it contains faults; during the operation of a 
system a fault manifests itself in the form of the system state going into an 
erroneous state such that - unless corrective actions by the redundant part of the 
system are undertaken - a system failure will eventually occur. 

3. Principles of fault tolerance 

Two complementary approaches have been noted for the construction of reliable 
systems (Avizienis 1976). The first approach, which may be termed fault 

prevention, tries to ensure that the implemented system does not and will not 
contain any faults. Fault prevention has two aspects: 
(i) fault avoidance techniques are employed to avoid introducing faults into the 
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system (e.g. system design methodologies, quality control); 
(ii) fault removal techniques are used to find and remove faults which were 
inadvertently introduced into the system (e.g. testing and validation). 

The second approach, which has been termed fault tolerance, is of special 
significance to us because of the impracticality of ensuring the complete absence of 
faults in a system containing a large number of components. Four constituent 
phases of the fault-tolerance approach have been identified: (i) error detection; 
(ii) damage assessment; (iii) error recovery; and (iv) fault treatment and 
continued system service. 

3.1 Error detection 

In order to tolerate a fault, it must first be detected. Since internal states of 
components are not usually accessible, a fault cannot be detected directly, and 
hence, its manifestations, which cause the system to go into an erroneous state, 
must be detected. Thus the usual starting point for fault-tolerance techniques is the 
detection of errors. 

3.2 Damage assessment 

Before any attempt can be made to deal with the detected error, it is usually 
necessary to assess the extent to which the system state has been damaged or 
corrupted. If the delay, identified as the latency interval of that fault, between the 
manifestation of a fault and the detection of its erroneous consequences is large, it 
is likely that the damage to the system state will be more extensive than if the 
latency interval were shorter. 

3.3 Error recovery 

Following error detection and damage assessment, techniques for error recovery 
must be utilized in an attempt to obtain a normal error-free system state. In the 
absence of such an attempt (or if the attempt is not successful) a failure is likely to 
ensue. There are two fundamentally different kinds of recovery techniques. The 
backward recovery technique consists of discarding the current (corrupted) state in 
favour of an earlier state (naturally, mechanisms are needed to record and store 
system states). If the prior state recovered to, preceded the manifestation of the 
fault, then an error free state will have been obtained. In contrast a forward 

recovery technique involves making use of the current (corrupted) state to construct 
an error free state. 

3.4 Fault treatment and continued service 

Once recovery has been undertaken, it is essential to ensure that the normal 
operation of the system will continue without the fault immediately manifesting 
itself once more. If the fault is believed to be transient, no special actions are 
necessary, otherwise, the fault must be removed from the system. The first aspect 
of fault treatment is to attempt to locate the fault; following this, steps can be taken 
to either repair the fault or to reconfigure the rest of the system to avoid the fault. 

To illustrate the ideas presented so far, let us examine the recovery block 
mechanism (Horning et al 1974; Randell 1975), a well-known method of 
constructing fault-tolerant software. The syntax of a recovery block construct is, 
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ensure ( acceptance test ) by P0 else-by Px else fail; 

which depicts a software system with four components, the two procedures F() (the 
primary) Px (the alternative), the acceptance test and the set of global variables 
accessible to the procedures (not shown above). The algorithm of the system is the 
control structure implied by the syntax. If we assume that the acceptance test is 
‘perfect’ (i.e. detects all violations of the specification) then the recovery block 
shown can tolerate faults within procedure P0 (if any) that could lead to its failure, 
provided of course, that Pj passes the test. Regarding P0 as a system, its faults are 
essentially design faults. So, when it is said that ‘a recovery block can tolerate 
design faults’, what is really meant is that it can tolerate faults in some of its 
components (P0 in our case) which could fail due to design faults in them. We shall 
next see how the four aspects of fault tolerance are embodied in a recovery block. 
The acceptance test (a boolean expression) is used for detecting errors. Damage 
assessment is particularly simple: only the component in execution is assumed to be 
affected. (We are assuming the simple case of a single sequential process; when 
interacting processes are involved, damage assessment can be quite difficult, 
Randell 1975.) Error recovery - backward in this case - consists of recovering the 
state of the executing program to that at the beginning of the recovery block. 
Finally, the program in execution (primary or alternative) is assumed to be faulty, 
so its faults are avoided by executing the next alternative (if any). 

The four aspects of fault tolerance form the basis for all fault-tolerance 
techniques and provide a sound foundation for design and implementation of 
reliable systems (Anderson & Lee 1981). 

4. Software design methodology 

In this section we will present a methodology for the construction of robust 
software systems based on the treatment presented in Anderson & Lee (1981) and 
Cristian (1982). Following generally accepted software engineering concepts, we 
shall assume the use of data abstractions (abstract data types) in program 
development. This leads to software systems that are structured into a hierarchy of 
modules (or components). Such a hierarchy may be represented by an acyclic graph 
(figure 1) where modules are represented by nodes and an arrow from a node A to 
a node B means that A is a user of B; that is, there are one or more operations in A 

such that a successful completion of one such operation depends on the successful 

Figure 1. Hierarchy of modules. 
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completion of some operation provided by B - in other words, B provides certain 
services to A. 

4.1 Expected events 

The specified services provided by a given module can be classified into normal 

services (expected and desired) and abnormal or exceptional services (expected but 
undesired). In programming language terms, when a user module calls a procedure 
exported by a lower level module, then either the call terminates normally 
(expected desired service is obtained) or an exceptional return is obtained. Let us 
now consider the design of an intermediate module such as B (see figures 1 & 2). 

A normal chain of events might consist of some procedure of A making a call on 
B, as a result of which B calls a lower level module (say E), this call returns 
normally, and subsequently A’s call returns normally. We examine now the two 
cases that could lead to A’s call returning exceptionally. 

(i) A call to a lower level module (such as E) by B returns exceptionally. In such 
a case we say that an exception is detected in B (this is synor ymous to saying that an 
error is detected in B\ we will use the term ‘exception’ here because it is more 
commonly used when talking about software). If this exception is not ‘handled’, 
then module B would certainly fail to provide the specified service to A. To cope 
with the detected exceptions, module B therefore contains exception handlers (the 
handlers thus represent the ‘abnormal’ part of a system mentioned earlier). If, des¬ 
pite the occurrence of a lower level exceptional return, module B provides a nor¬ 
mal service to A, we say that the lower level exception has been masked by the 
handler in B. On the other hand, if B is unable to mask a lower level exception and 
provides an exceptional return to A, we say that the lower level exception has been 
propagated to a higher level. 

(ii) A boolean expression in B - inserted specifically for detecting an error (ex¬ 
ception) - evaluates to false. The treatment of this exception by its handler is 
similar to the previous case: either that exception is masked, in which case 
(provided no further exceptions are encountered) B will return normally to A, 
otherwise an exceptional return is obtained by A. 

We thus see that the construction of a robust module requires the provision of 
(a) exception handlers for coping with exceptions propagated from lower levels; 
and (b) boolean expressions for detecting exceptions arising in the module itself, 

module 'B' 

normal exceptional 
return returns 

i t t.u 
normal exceptional 
part part 

r~f t n 
call normal exceptional 

return returns 

fail exception 

fail exception 

Figure 2. Structure of a module. 
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and their exception handlers. Note that it is possible (and often desirable for the 
sake of simplicity) to map several exceptions onto a single handler. 

The need for exception handling facilities in programming languages has now 
been recognised and many modern languages such as CLU (Liskov & Snyder 1979) 
and ADA (Luckham & Polak 1980) contain specific features for exception handling. 
We shall use here some simple notations which will enable us to illustrate these 
ideas with the help of a few examples. The following notation will be used to 
indicate that a procedure P, in addition to the normal return, also provides an 

exceptional return E: 

procedure P(- -) signals E;. 

The invoker of P can define the exceptional continuation to be some operation H 

which will be termed the handler of E: 

P(- -) [£=>#];. 

In the body of P, the designer of P can insert the following syntactic constructs 
(where the braces indicate that the signal operation is optional): 

(a) [P=> ....; {signal E}]; 

(b) <2[D=s>....; {signal £}];. 

Construct (a) represents the case whereby an exception is detected by a run time 
test; whilst the second construct represents the case when invocation of an 
operation Q results in an exceptional return D which in turn could lead to the 
signalling of exception E. When an exception is signalled using construct (a) or (b), 
the control passes to the handler of that exception (H in this case). 

Example: We consider the design of a procedure P which adds three positive 
integers. The procedure uses the operation ‘ + ’ (typically provided by the hardware 
interpreter) which can signal an overflow exception OV. 

procedure P(var i: integer; j, k\ integer) signals OW; 

begin 

. i := i+ j[OV==^> signal OW]; 

i : = i + k[OV=z>i := i—j\ signal OW]; 

end;. 

It is assumed above that no assignment is performed if an exception is detected 
during the execution of the operation ‘ + \ 

The above example also illustrates an important aspect of exception handling, 
which is that before signalling an exception it is often necessary to perform a ‘clean 
up’ operation. The most sensible strategy is to ‘undo’ any side effects produced by 
the procedure. If all the procedures of a module follow this strategy, we get a 
module with the following highly desirable property: either the module produces 
results that reflect the desired normal service to the caller, or no results are 
produced and an exceptional return is obtained by the caller. 

Example: A file manager module exports a procedure CREATE whose function is to 
create a file containing n blocks. Assume that the file manager employs two discs 
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for block allocation such that a given file has its blocks on either disc d\ or d2, and 
that Mi and M2 are the disc manager modules for dx and d2 respectively. 

procedure CREATE (n: integer) signals NS; 

begin 

Mi • AL(n)[DO==>M2- AL(n)[DO ==> restore; signal NS]]; 

end;. 

The above procedure illustrates how an exception may be masked. The AL 
procedure of a disc manager allocates n blocks, but if the number of free blocks is 
less than requested, a disc overflow exception (DO) is signalled. The first handler 
of this exception tries to get space from the second disc manager. If a second DO 
exception is detected then the procedure is exited with a ‘no space’ exception NS. 
The procedure ‘restore’ recovers the state of global variables accessible to CREATE 
to that at the beginning of the call (this follows from our philosophy of undoing any 
side effects before signalling an exception). 

4.2 Unexpected events 

So far we have considered the treatment of ‘expected events’ (desired or 
undesired); we turn our attention to the treatment of unexpected (and therefore 
undesired) events. Let us assume that the hardware interpreter over which the 
software under consideration is executing is behaving according to the specifica¬ 
tion. Then, any unexpected behaviour from a software module must be attributed 
to the existence of one or more design faults in that module or any of its lower level 
modules. In general, during the execution of a procedure P of a module, a design 
fault can manifest itself in any of the following ways: 
1) the execution of P does not terminate; 
2) a lower level exception is detected for which there is no exception handler in P; 

3) the execution of P terminates normally (the invoker obtains a normal return) 
but the results produced by P are not in accord with the specification. 

It is clear that situations (1) and (2) will eventually cause a failure of the module; 
situation (3) represents the case where the module has failed but this event has not 
yet been detected by the system. To cope with such cases, we can employ a default 
exception handler: 

procedure P(- -) signals E ; 

begin 

end [=> “default handler”];. 

The control goes to this handler during the execution of P whenever an exception is 
detected for which there is no handler. Thus, to cope with situation (1) it is possible 
to start a ‘timer’ concurrently with the invocation of P ; the ‘time out' exception will 
then be handled by the default handler. All the lower level exceptions with no 
programmed handlers will similarly be handled by the default handler. Finally we 
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make use of run time checks (assertions) to detect possible violations of 
specifications to minimise the danger of undetected failures (case 3). 

What should be the strategy adopted by a default handler? The simplest thing to 
do is to undo any side effects produced by the procedure and to signal a fail 

exception (see figure 2). When the invoker receives a fail exception, it means that 
the called module has failed to provide the specified service. Nevertheless, the 
called module hasiailed ‘cleanly’ since no side effects have been produced. It is also 
possible for the default handler to mask the (unanticipated) exception by calling an 
alternative procedure in the hope of circumventing the design fault(s). The 
similarity with the recovery block approach is not accidental, as the example below 
shows how a recovery block can be modelled by making use of default exception 

handlers: 
ensure ( acceptance test ) by P0 else-by Pi else fail;. 

The "above construct is equivalent to the following one: 

Po [-> restore; P [ [ — > restore; signal fail]]; 

where, P-, i = 0, 1, is given by: 

procedure P[ 

begin 

body of Pt\ 

assert ( acceptance test ); 

end [ — => signal fail];. 

The following design methodology has then emerged. During the design of a 
given module, we carefully analyse the cases that could prevent the module from 
providing the desired normal services. We make use of specific exception handlers 
to either mask the effects of such undesired but expected exceptions or to signal an 
appropriate exception to the caller of the module; the purpose of signalling an 
exception is to indicate to the caller that the normal service cannot be provided and 
also to give an indication of the reason (e.g. arithmetic overflow, disc full, fail etc.). 
We make use of default exception handlers or recovery blocks to obtain a measure 
of tolerance against design faults. The capability of tolerating design faults rests 
largely on the ‘coverage’ of run time checks (such as acceptance tests) for detecting 
errors. Often, for reasons of efficiency, it is not possible to check completely within 
a procedure that the results produced have been according to the specification (e.g. 
for a routine that sorts its input, the check that the output has been sorted would be 
almost as complex as the routine itself); hence run time checks are often limited to 
checking certain critical aspects of the specification (hence the name ‘acceptance 
test’). This means that the possibility of undetected failures cannot be ruled out 
entirely. 

5. Tolerance for design faults 

The difficulty in providing tolerance for design faults is that their consequences are 
unpredictable. As such, tolerance can only be achieved if design diversity has been 
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built into the system (figure 3). In the last section, recovery blocks (or default 
exception handlers) were mentioned as a mechanism for introducing design 
diversity. In this section the concept of design diversity is explored further. One 
more proposal, in addition to recovery blocks, has been made for tolerating design 
faults in software, and is known as N-version programming (Avizienis 1985). Both 
the approaches can be described uniformly using the diagram given below (Lee & 
Anderson 1985; pp. 64-77). 

Each redundant module has been designed to produce results acceptable to the 
adjudicator. Each module is independently designed and may utilize different 
algorithms as chosen by its designer. In the yV-version approach-, the adjudicator is 
essentially a majority voter (the scheme is analogous to the hardware approach 
known as the /V-modular redundant technique). The recovery block scheme has an 
adjudicator which applies an acceptance test to each of the outputs from the 
modules in turn, in a fixed sequence. 

The operational principles of the N-version approach are straightforward: all of 
the N modules are executed in parallel and their results are compared by a voting 
mechanism provided by the adjudicator. The implementation of this scheme 
requires a driver program which is necessary for: (i) invoking each of the modules; 
(ii) waiting for the modules to complete their execution; and (iii) performing the 
voting function. Each module must be executed without interference from other 
modules. One way of achieving this goal is to physically separate the modules - 
each module is run on a separate processor. 

A special case of ^-version programming is when the degree of replication is just 
two. In this case the adjudicator provides a comparison check. The Airbus A310 
slat and flap control system (Martin 1982) uses this approach, for driving stepping 
motors via a comparator. In the event of a discrepancy, the motors are halted, the 
control surfaces locked and the flight crew alerted. 

Experiments conducted at UCLA and elsewhere on N-version programming 
(Avizienis 1985; Knight & Leveson 1986) and at Newcastle on recovery blocks 
(Anderson et al 1985) have produced encouraging results indicating that tolerance 
to design faults is certainly possible. 

Figure 3 Design diversity. 
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6. Software implemented fault tolerance 

6.1 Tolerance to hardware faults 

The techniques presented in §4 can be applied to the case when lower level modules 
have been implemented in hardware (e.g. disc units, processors). If these modules 
also provide normal and exceptional services (which is usually the case) then higher 
level software modules which use them can employ the fault-tolerance techniques 
discussed previously to either mask a lower level hardware exception or to 
propagate it as a higher level exception. The term software implemented fault 

tolerance is often used to refer to software techniques for tolerating hardware 
faults. The resulting algorithms will be termed fault-tolerant algorithms. When 
dealing with hardware the following points must be borne in mind: 
(i) An exceptional response is often obtained due to a transient fault in the 
hardware; thus simply retrying the operation may prove to be sufficient. 
(ii) All hardware components eventually fail (due to ageing and wearout); so when 
a failure of a hardware module is suspected, steps might be required to 
permanently remove the module from the system (reconfigure the system). 
(iii) Diagnostic techniques can be used in an operational system to detect possible 
failures of components and to repair (replace) them before these components are 
utilised for services. 

The function of a fault-tolerant algorithm of a system is to detect failures of the 
system’s components and to attempt to tolerate these failures so as to provide 
specified services. 

Example. Construction of reliable disc storage out of unreliable discs. A disc can 
fail (permanently) due to defective disc surface conditions, failure of the disc drive 

system or failure of the read-write electronics. In addition, various other accidents 
can occur which can cause data stored in one or more pages of a disc to be cor¬ 
rupted. Here we will briefly discuss tolerance to these latter kind of failures. 

We assume the existence of the following two hardware procedures for accessing 
a disc: 

procedure write (at: address; data: page); 

procedure read (at: address; var data: page) signals looksbad;. 

The exception iooksbad’ indicates that the data read could be corrupted. This 
could either be because the page is really corrupted or some transient failure has 
occurred - in which case a bounded number of retries should eventually result in 
good data being read. The effect of a write operation is that either (i) the addressed 
page gets the data; or (ii) the addressed page remains unchanged or gets corrupted 
data. 

We next construct fault-tolerant read and write operations using the unreliable 
operations mentioned above: 

procedure careful-read (at: address; var data: page) signals bad-page; 

begin 

use read operation at most n number of times to obtain 
good data (i.e. not looksbad) else signal bad-page; 

end; 
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procedure careful-write (at: address; data: page) signals bad-page 

begin 

perform ‘write’ and then ‘careful-read’ on the same page to 
check written data = read data; if the check fails even after n 
retries then signal bad-page 

end;. 

One way we can guard against accidental corruption of a page is by making sure 
that an uncorrupted copy of the page is available somewhere. This can be achieved 
by employing two discs (with independent failure modes) and by maintaining pairs 
of pages on these discs. It is then necessary to check at regular intervals that the 
pairs of pages have identical uncorrupted data stored in them; if not, the corrupted 
page of a pair is updated by performing a careful read on the paired page followed 
by a careful write on the corrupted page. The interval of running this checking 
process is chosen so as to reduce the probability of both the pages of a pair 
becoming corrupted to an acceptably small quantity (Lampson & Sturgis 1981). 

6.2 Modelling faulty behaviour of components 

The simple example of the previous sub-section illustrates how, given a 
specification of abnormal behaviour of components, specific measures can be 
employed in fault-tolerant algorithms. The fault-tolerance measure employed by 
‘careful-read’ (namely, repeated retries) will only be effective, when a read opera¬ 
tion fails by reading the addressed page in a detectably incorrect manner (excep¬ 
tion looksbad is signalled). Clearly, the employed measure will not be effective if a 
disc fails, say, by correctly reading a page other than the intended one. Thus, 
design of a fault-tolerant algorithm of a system entails making assumptions about 
the behaviour of faulty components of the system. A given faulty component can 
behave in many different ways, some of which will be easier to tolerate than others; 
furthermore, certain patterns of faulty behaviour are likely to be more probable 
than others. 

Suppose we can classify faulty behaviour of a component starting from those that 
are relatively restricted breaches of the specification (caused by simple faults) to 
those that are increasingly more general breaches of the specification (caused by 
complex faults). Then we can design a family of fault-tolerant algorithms - from 
simple ones tolerating simple faults to increasingly more complex ones tolerating 
larger classes of more general faults. Given such a family of algorithms, one can 
select a particular one depending upon the stated reliability requirements - 
choosing an algorithm tolerating larger classes of faults (or in the extreme, all 

types of faults) for a system requiring a very high degree of reliability. In this 
section, such a fault classification is presented. The treatment presented here is 
based on that by Ezhilchelvan & Shrivastava (1986) where more details can be 

found. 
Following Kopetz (1985, pp. 91-101), the response of a component for a given 

input will be said to be correct if the output value is not only as expected, but also 
produced on time. Formally, the correct response of a component is defined as 

follows. 
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Correct response of a component: Let a component receive at time tt an input 
requiring a non-null response from the component and as a result produce an 
output value vy at time tj. For that input, the response vy at time tj is correct iff: 
(i) the value is correct: vy = wj, where Wj is the expected value consistent with the 
specification; and, 
(ii) the response is correct: tj = f; + L/+ 8t, where td is the minimum delay time of 
the component, and 8t is the unpredictable delay such that 0 < 8t < tmax, and /max 
is the maximum unpredictable delay time of the component. 

The values td and tmax are constants for a given component. First of all, we note 
that the response of a component cannot be instantaneous to a given input but must 
experience a finite minimum amount of delay which is specified by the parameter 
td. Secondly, it is usual in engineering specifications to indicate a time interval 
during which a response is required; according to our definition, this interval is 
from ti + td to ti + td + tmax. 

A correctly functioning component does not arbitrarily produce responses. In 
particular, when there is no input (null input) or when no response is expected for 
an input, there is naturally no output value produced (output is null). The values td 
and tmax are meaningful only when non-null output values are produced. 

If vy Wj, then the output value will be termed incorrect; similarly, if tj < ti + td 
(output produced too early) or tj > ti + td + tmax (output produced too late), then 
the response time will also be termed* incorrect. 

Given the above definitions of correct and incorrect responses, there can be at 
most three possible ways by which a response can deviate from that specified. This 
leads to the following three types of faults. 

(/) Timing fault: A fault that causes a component to produce the expected value for 
a given input either too early or too late will be termed a timing fault and the 
corresponding failure a timing failure. Using our notation: 

(i) vy- = Wj, and (ii) either tj < tt + td or tj > tj + td + tmax. 

(ii) Value fault: A fault that causes a component to respond, for a given input, 
within the specified time interval, but with a wrong value will be termed a value 
fault and the corresponding failure a value failure: 

(i) vy Wj, and (ii) tj = tl-^tdJt8t. 

(iii) Commission fault: A fault of commission is responsible for a commission 
failure with the following property: 

vy # Wj, and/or tj ^ tt + td + 8t. 

A commission failure is any violation from the specified behaviour. In particular, 
it includes the possibility of a component producing a response when no input was 
supplied. 

(iv) Omission fault: Many fault-tolerant algorithms are designed under a 
particularly simple failure mode assumption, which is that a component can fail 
only by producing no response. A fault which causes a component, for a given input 
requiring a non-null response, not to produce any response will be termed an 
omission fault and the corresponding failure an omission failure. 
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We could regard ‘not producing a response’ as equivalent to ‘producing a null 
value on time’, thereby treating an omission fault as a special case of a value fault. 
We can also treat an omission fault as a special case of a timing fault by regarding 
‘not producing a response' as equivalent to ‘producing a correct value at infinite 
time’. 

Fault!failure lattice: A commission fault (failure) subsumes all the other three types 
of faults (failures). The relationships among these four types of faults (failures) can 
be expressed by the following fault (failure) lattice (figure 4), where an arrow from 
A to B, indicates that fault (failure) type A is a special case of fault (failure) type B. 

(The relation *->’ is transitive.) An important observation can now be made which 
is that a fault-tolerant algorithm designed to tolerate ra, m > 0, timing failures 
(value failures) can also tolerate m omission failures and further that an algorithm 
designed to tolerate m commission failures can tolerate m failures of any type. The 
top of the lattice represents the simplest and the bottom, the most general fault 
(failure). 

Examples: We will next give some examples of various types of failures. A 
self-checking component (e.g. a processor) that stops functioning as soon as an 
error is detected within itself can be regarded as suffering from omission failures. 
On the other hand, a self-checking component, which upon detecting an error, 
responds within time by producing a ‘fail signal’ can be said to fail due to a value 
fault. If the signal is produced too late or too early, then the failure would be 
classed as a commission failure. A software module that produces correct output 
values but too late (perhaps because the processor executing the program was 
overloaded) will fail in a timing manner. Similarly, late delivery of an uncorrupted 
message will be termed a timing failure, while a late delivery of a corrupted 
message will be a failure of commission. Delivery of a corrupted message within 
time will be a value failure. A component that produces values arbitrarily will have 
a commission fault. 

The above classification is based on the behaviour of a component with respect to 
an individual response. Each type of fault (and failure) can be further subclassified 
when a sequence of responses is considered. If a particular faulty behaviour persists 
for a ‘sufficiently lengthy’ response sequence, then that failure type can be 
classified as permanent (as against transient). The ideas presented here are 
discussed at length by Ezhilchelvan & Shrivastava (1986) where a family of 
agreement protocols has also been developed. 

omission 

commission Figure 4. Fault/failure lattice. 



20 S K Shrivastava 

7. Concluding remarks 

We began by examining the nature of systems and their faults and developed basic 
concepts of fault tolerance. These concepts were utilized in a methodology for the 

development of robust software modules - the building blocks of any software 
system. The concepts presented here can be applied to the design of a wide variety 
of computing systems. We present two examples from distributed systems 
composed of a number of nodes (computer systems) connected by a communica¬ 
tions system (e.g. a local area network). 

(1) Robust distributed programs: Let us consider the reliability aspects of 
distributed programs: programs that have been composed out of modules residing 
on different nodes of a distributed system. We will consider a specific class of 
applications such as banking and office information systems, where maintaining the 
integrity of stored data is of considerable importance. Imagine that the nodes of the 
system provide various services which can be invoked from any node. A typical 
distributed program might be thought of as composed out of a ‘root’ program 
(running at a user’s node) that contains service calls to some remote services and 
routines at nodes that provide the services. The execution of such a program will 
involve a group of cooperating processes distributed over the system. When a 
program running at some node makes a legitimate service call to some other node, 
there can be many reasons why that service might not be available; for example, the 
communication link between the nodes might be faulty or the server node may have 
‘crashed’ and so on. For these, and many other reasons, it is quite possible for the 
computation of a distributed program to arrive at a state from which further 
meaningful progress is not possible. Under such circumstances it is preferable that 
the computation be terminated without producing any results (side effects). 
Various reliability mechanisms are necessary for supporting such ‘cleanly’ 
terminating programs that maintain the integrity of stored data. In addition to the 
integrity requirement, we also require the property of durability of results: once 
results have been produced by a terminated program, the results should survive 
system failures with a high probability of success. Finally, it is required that the 
stored data be made available despite system failures. 

It is well-known that the above reliability requirements can be tackled within the 
framework of atomic actions (atomic transactions) (Lampson & Sturgis 1981; Gray 
1986) . The methodology presented here provides an ideal set of structuring 
concepts (Randell 1985). System design will require making fault models of 
components such as communication media, nodes and storage media. Specific 
fault-tolerant algorithms are then constructed for reliable interprocess communica¬ 
tions (e.g. remote procedure calls, Lin & Gannon 1985; Panzieri & Shrivastava 
1987) , reliable storage, maintenance of replicated data, concurrency control and so 
forth. The most convenient way of introducing design diversity in such a system is 
at the level of atomic actions; for example, by executing each primary or alternative 
of recovery blocks as an atomic action. 

There is a large body of literature on the topic of atomic actions in distributed 
systems. The interested reader may find the tutorial presented in Shrivastava 
(1985a, pp. 102-121) a useful starting point. 
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(ii) Replicated distributed processing: Many real-time systems require a very high 
degree of reliability, for which utilization of modular redundancy in the form of 
replication of processing modules with majority voting provides a very attractive 
possibility. An added advantage of replicated processing for real-time systems is 
that the time critical nature of processing often means that masking of failures by 
majority voting is the most appropriate fault treatment strategy. We will consider 
our system to be composed of a number of nodes fully connected by means of 
redundant communication channels. A node will represent a functional processing 
module, constructed as a number of processors and voters in a classical NMR 

(TV-modular redundant) configuration. Fault-tolerant scheduling algorithms are 
required for properly executing real-time tasks in a replicated manner (Shrivastava 
1987). In particular it is necessary to ensure that all the non-faulty processors of a 
node execute incoming tasks in an identical order. An interesting aspect of the 
work reported by Shrivastava (1987) is that the exception‘handling framework 
reported here can be applied to the development of voting algorithms for detecting 
certain types of component failures (see Mancini & Shrivastava 1986 for more 
details). Thus, voters enhanced in this manner can be exploited for passing on 
component failure information to the reconfiguration sub-system. 

The replicated distributed processing architecture, briefly mentioned here, 
provides a suitable framework for executing TV-version programs. The system 
developed at UCLA (Avizienis 1985) has many similarities to the architecture 
described here. 

Many of the ideas presented in this paper have been developed over the years by 
a well-established research group at the author’s institution. Some of the work of 
this group is available in book form (Shrivastava 1985b) and may be of interest to 
readers wishing to delve further into the exciting subject of fault-tolerant 
computing. 

The work reported here has been supported in part by research grants from the 
Science and Engineering Research Council and the Ministry of Defence. 
Comments from Tom Anderson on a previous version of the paper are gratefully 
acknowledged. 
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Abstract. This paper presents on overview of the issues in precisely 
defining, specifying and evaluating the dependability of software, 
particularly in the context of computer controlled process systems. 
Dependability is intended to be a generic term embodying various 
quality factors and is useful for both software and hardware. While the 
developments in quality assurance and reliability theories have pro¬ 
ceeded mostly in independent directions for hardware and software 
systems, we present here the case for developing a unified framework of 
dependability-a facet of operational effectiveness of modern technolo¬ 
gical systems, and develop a hierarchical systems model helpful in 
clarifying this view. 

In the second half of the paper, we survey the models and methods 
available for measuring and improving software reliability. The nature 
of software “bugs”, the failure history of the software system in the 
various phases of its lifecycle, the reliability growth in the development 
phase, estimation of the number of errors remaining in the operational 
phase, and the complexity of the debugging process have all been 
considered to varying degrees of detail. We also discuss the notion of 
software fault-tolerance, methods of achieving the same, and the status 
of other measures of software dependability such as maintainability, 
availability and safety. 

Keywords. Software dependability; software reliability; software 
fault-tolerance; computer controlled process systems; software quality 
assurance. 

1. Introduction 

A major technological concern for the next decade is the serious and widening gap 
between the demand for high quality software and its supply. Examples of such 
systems in the Indian context are the flight control software for the light combat 
aircraft designed to go into production in the 1990s and the software for the 
command-control-communication systems of national defence. Process control 
software for the control and management of nuclear power plants and hazardous 
chemical processes is also required to be error-free and fault-tolerant. 
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Computer software refers to computer programs, procedures, rules and possibly 
associated documentation and data pertaining to the operation of a computer 

system. System-software pertains to the software designed for a specific computer 
system or family of systems to facilitate the operation of the computer system and 
associated programs such as the operating systems, compilers and utilities. 
Application software is specifically produced for the functional use of a computer, 
for example, the software for navigation of an aircraft. 

Software may conveniently be viewed as an instrument (or a function or a black 
box) for transforming a discrete set of inputs into a discrete set of outputs. For 
example, a program contains a set of coded statements which evaluate a 
mathematical expression or solve a set of equations and store the set of results in a 
temporary or permanent location, decide which group of statements to execute 
next or to perform appropriate I/O operations. With a large number of 
programmers carrying out this task of generating a program, discrepancies arise 
between what the finished software product does and what the user wants it to do as 
specified in the original requirement specification. In addition, further problems 
arise on account of the computing environment in which the software is used. These 
discrepancies lead to faulty software. Faults in software arise due to a wide variety 
of causes such as the programmer’s misunderstanding of requirements, ignorance 
of the rules of the computing environment and poor documentation. 

Large software systems often involve millions of lines of code, often developed 
by the cooperative efforts of hundreds of programmers. Enhancing the productivity 
of software development teams, while assuring the dependability of software, is the 
challenging goal of software engineering. Problems that come in the way of 
development of dependable software are: fuzzy and incomplete formulation of 
system specifications in the initial stages of a software development project, 
changes in requirement specifications during system development, and imperfect 
prediction of needed resources and time targets. 

A large scale system is often evaluated in terms of its operational effectiveness. 
The latter is an elusive concept that encompasses technical, economic and 
behavioural considerations (Bouthonnier & Levis 1984). System dependability is a 
facet of effectiveness. Dependability is “the quality of service delivered by a 
computer system, such that reliance can justifiably be placed on this service” 
(Laprie 1984, 1985). The quality of service denotes its aggregate behaviour 
characterizing the system’s trustworthiness, continuity of operation and its 
contribution to the plant’s trouble-free operation. The behaviour is simply what it 
does in the course of its normal operation or in the presence of unanticipated 
undesirable events. In the context of process control, an example of a large scale 
system is a process controlled by a distributed computer system (DCS). A DCS is 
defined as a collection of processor-memory pairs connected by a communication 
subnet and logically integrated in various degrees by a distributed operating system 
and/or a distributed database. In such a process, the DCS should provide, in 
real-time, information regarding the plant state variables and structure to the 
various control agents. The control software must react adequately to the chance 
occurrences of undesirable events such as physical failures, design faults or 
environmental conditions. The overall dependability evaluation of the system 
depends upon the designer’s ability to define compatible dependability metrics for 
the software, hardware and human operator components of a large system. 
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The paper is organized as follows. Section 2 contains the development of a 
hierarchical model useful for understanding the effectiveness and the dependability 
of a complex system in terms of the three basic notions of a system, a mission and a 
context. Section 3 specializes these definitions to software systems and identifies a 
set of useful dependability factors. Section 4 presents a detailed study of the 
software reliability models. Section 5 introduces the notion of software fault- 
tolerance and describes the means of achieving it. Section 6 briefly reviews the 
status of other dependability metrics such as availability and maintainability. 
Section 7 discusses some implications of dependability in the context of process 
control. 

2. A hierarchical model for system evaluation 

Figure 1 shows a hierarchical model for defining the effectiveness of a complex 
system. The operational effectiveness is an elusive concept that encompasses 
technical, economic and behavioural considerations. Dependability is one facet of a 

system context mission 

Figure 1. (a) Hierarchical system model for dependability definitions. 
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System 

Mission 

Context 

Primitives 

Attributes 

Measures of effective¬ 
ness 

The whole of the process control system including all of its 
components (e.g. the plant, the sensors, the actuators, the control 
computer, including the hardware and the software), the operators, 
the set of operating procedures and their interactions. 

The set of objectives and tasks that an organization hopes to 
accomplish with the help of the system over a prescribed time 
period. The objectives are global accomplishments stated at a hiher 
level in the hierarchical model. They are achieved by satisfactory 
completion of lower level functional tasks. If a DCS is a system, 
transmission of a message between two specified nodes is a 
particular mission. 

The environment in which the mission takes place and the system 
operates. 

The parameters that describe the system and the mission. For 
example, the primitives of a DCS are the numbers of nodes and links, 
the node reliabilities and the link capacities. The mission primitives 
are the origin-destination pairs and the message size. 

Higher level system properties and mission requirements. An 
example in the DCS context is the maximum delay allowed for 
communication between a source-destination pair. 

Quantities that result from a comparison of the system and the 
mission attributes. They reflect the extent to which the mission 
requirements and the system capabilities match. 

Figure l.(b) Definitions of system effectiveness terms. 

system’s effectiveness while performance and cost are other important dimensions. 
Figure la Refines several of the terms of figure 1 (Bouthonnier & Levis 1984). 
Example 1 clarifies these terms in the context of a transoceanic flight (a mission) 
performed by a modern commercial aircraft (a system). Dependability denotes the 
quality of service delivered by a system as it accomplishes a prescribed mission. By 
observing this behaviour or the data characterizing it, it is possible to label it as 
“success” or “failure”. There is no need to restrict to binary or dichotomous 
descriptions. Several levels and combinations of system accomplishments as 
perceived by interacting systems can be used. 

Example 1: (Dependability evaluation of an aircraft flight) 
In this example, we consider the effectiveness of an aircraft mission (say, a 
trans-oceanic flight of a modern transport aircraft) and its relationship to the 
dependability of its control computers. It is assumed that the computer system is 
ultra-reliable (with reliability of the order of 1-10-9 for a 10-hour mission). This 
level of reliability is achievable in computers such as SIFT (software implemented 
fault-tolerance) and FTMP (fault-tolerant multi-processor) developed under NASA 

sponsorship (Siewiorek & Swarz 1982: Viswanadham et al 1987). The aircraft 
mission may be a trans-Atlantic flight from Paris to Houston. Note that the 
dependability of this particular flight differs for a flight from Paris to New Delhi, 
which is mostly on land with additional navigational aids and airports for 
emergency landing. The environment in which the mission takes place determines 
the context (see figure 1). The system primitives are the aircraft computer 
components and their reliabilities while the mission primitives are the various 
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phases of the flight and their durations (Pedar & Sarma 1981). The survivability of 
the autoland function at the end of a 10-hour flight is a mission attribute while a 
system attribute is the probability of the loss of a control task due to software 
errors. Whether we can accomplish the mission on hand with the system may be 
determined via the system and mission loci which are determined from the 
corresponding attributes. Using this hierarchical model, it is possible to compute 
the probabilities of several accomplishment levels achievable by the mission as 
shown by Pedar & Sarma (1981) (see example 3 below, § 6.3). This also provides a 
basis for comparing the various fault-tolerant computer architectures for flight 
control computers. 

Example 2 considers the dependability modelling of a complex system consisting 

of hardware, software and humans. 

Example 2: (Overall system reliability assessment) 
Let us assume that a good-sized computer system is needed in a critical control 
application. The first step in system design is to apportion the specified overall 
system reliability between the hardware, the software and the human operators. 
An expression for the computer system reliability is given by 

R = P (S.H.O) = P(S) P(H\S) P(0\H.S). (1) 

In (1), S, H, and O stand for the events in which the software, the hardware and the 
operator perform without failure and (.) denotes set intersection. Assuming 
independence (Shooman 1983), 

P(H\S) = P(H), and P(0\S.H) = P(O), (2) 

giving 

R = P(S) P(H) P(O) = Rs-Rh-Po- (3) 

This procedure can be used to set the reliability goals initially. The software, the 
hardware and the operator can be assumed to be in series. While this example does 
not throw light on the special characteristics of software reliability, it shows the use 
of having common dependability measures. A unified framework is thus essential 
in estimating quantitatively the operational effectiveness and dependability of a 
large system. 

3. Software dependability factors 

At present, software dependability is the limiting factor in achieving a high 
operational effectiveness of complex computer-based systems. Quality assurance 
has different implications in software and hardware systems. While the emphasis in 
hardware quality control is on controlling the quality of fabrication of an accepted 
design, the nature of the design process itself is to be properly understood and 
controlled for obtaining high quality software. Currently, there is no widely 
accepted set of factors, definitions or metrics for describing the dependability of 
software across its lifecycle. Software products and processes may be characterized 
across many dimensions and levels. At the topmost level, we may specify what are 
called software dependability factors. This refers to the management-oriented view 
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of software dependability. Some examples of these factors are: correctness, 
efficiency, integrity, reliability, maintainability, safety etc. At the middle level, 
quality attributes from the programmer’s viewpoint such as complexity, 
modularity, security, traceability etc. may also be used to define software 
dependability. At the lowest level we may consider various metrics and measures 
which are numbers calculated based on appropriate models of software. These 
metrics may be related either to the dependability factors at the top level or to the 
quality attributes at the second level. 

In spite of the considerable work in the area of software quality assurance, 
several questions remain unanswered because of the lack of proper definitions and 
quantitative information obtained from appropriate data analysis. Some of the 
questions are (Cavano 1985): 
1. How does the software acquisition manager go about establishing meaningful 
measures for software dependability factors? 
2. What tradeoffs need be considered in terms of dependability, cost, schedule and 
performance? 
3. How can future values of factors such as software reliability be predicted and 
evaluated at key milestones in the development life cycle? 
4. What development techniques are required to improve confidence in the 
project? 
5. How much testing should be performed and what testing techniques are 
required to achieve specified reliability levels? 
6. How can the user assess how well dependability goals were met during 
deployment of the software? 

The US Department of Defense (dod) has sponsored considerable work in the area 
of software quality and reliability at the RADC (Rome Air Development Centre). 
What are available today are a large collection of seemingly important software 
attributes and factors. In the last decade several models have been developed to 
evaluate the attributes and factors. In this section, we shall briefly review the 
definitions of some of the factors and survey the state-of-the-art with respect to the 
extent to which the questions raised above may be answered. 

At the first step, we give the preliminary definitions of some software 
dependability terms as given by the IEEE glossary of Software Engineering 
Terminology (IEEE 1979). 

Software quality 

1. The totality of features and characteristics of a software product that bears on its 
ability to satisfy given needs e.g. to confirm to specifications. 
2. The degree to which software possesses a desired combination of attributes. 
3. The degree to which a customer or user perceives that software meets his 
composite expectations. 

Quality metric 

A quantitative measure of the degree to which the software possesses a given 
attribute which affects its quality. 
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Software reliability 

1. The ability of a program to perform a required function under stated conditions 
for a stated period of time. 
2. The probability that the software will not cause the failure of a system for a 
specified time under specified conditions. 
This probability is a function of the inputs to and the use of a program as well as a 
function of the faults existing in the software. The inputs determine whether the 
faults in a program are encountered in an execution of the program. 

Software maintenance 

Modification of a software product after delivery to correct latent faults, to improve 
performance or other attributes or to adapt the product to a changed environment. 

Software maintainability 

1. A measure of the time required to restore a program to operational state after a 
failure occurs. Note that in the case of software, service reaccomplishment only 
requires an execution restart with an input pattern different from the one which led 
to failure. This measure also depends on whether the software is critical or 
noncritical (Laprie 1984). 
2. The ease with which software can be maintained. 
3. Ability to restore the software to a specified state. 

Software availability 

The probability that the software will be able to perform its designated function 
when required for use. 

Software life cycle 

The period of time commencing from the point when a software product is 
conceived and ending when the product is no longer in use. 

The definitions of the terms as presented in the IEEE glossary of terms only indicate 
the broad sense in which the terms are being used by the software engineering 
community. The definitions are to be refined considerably, if they are to be of any 
use in providing quantitative understanding of the field of software dependability. 
In table 1, we provide a list of dependability factors with their brief descriptions and 
the phase of the software life cycle in which they can be used. 

4. Software reliability 

The most widely studied among software dependability factors is software 
reliability. Definitions 1 and 2 in § 3 characterize the two senses in which the term is 
used. When used as a metric as per definition 2, the definition should include an 
appropriate definition of system success or failure, the operational conditions of the 
software use and the specification of the random variable in question. 

Note: At this point, it is helpful to clarify the notions of fault, error and failure. 
A programmer’s mistake is a fault in the system. This leads to an error in the 
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Table 1. Software dependability factors 

Operational phase 

Correctness Extent to which specifications are met 

Reliability Period in which intended function is met 

Efficiency Amount of computer resources and code needed 

Integrity Extent to which unauthorized access is limited 

Usability Ease of learning and operation 

Availability Fraction of time in which the intended 

function is met 

Safety Period in which the system does not go 

to unsafe states 

Maintenance phase 

Maintainability Period in which faults can be located 

and fixed 

Testability Ease of testing to insure correctness 

Flexibility Ease of modification 

Transition phase 

Portability Transferability from one hardware or 

software environment to another 

written software (e.g. an erroneous instruction or data). The error is latent until 
activation and becomes effective when an appropriate input pattern activates the 
erroneous module. This causes deviation in the delivered service (resulting in an 
unacceptable discrepancy in the output) when a failure is said to occur. Program 
faults are also called bugs. 

The specification of the computing environment must include precise statements 
regarding the host machine, the operating system and support software, complete 
ranges of input and output data and the operational procedures. While the 
conceptual definition is generally accepted, the method of estimating and 
measuring this quantity is riddled with many questions. 

4.1 Issues in software reliability modelling 

While the definition of software reliability appears similar to its hardware 
counterpart, several distinguishing features must be carefully considered. 

(i) Phases of software life cycle: It is convenient to quantify software reliability 
based on the phase of the software life cycle in which the analysis is conducted 
(Shooman 1983; Goel 1985). The following phases may be distinguished: 

— Development phase 
— Requirements phase 
— Design and programming phase 

— Testing phase 
— Module test phase 
-Integration and functional test phase 
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— Validation phase 
— Operational phase 
— Maintenance phase 
— Retirement/transition phase 

Different models and measures of software reliability may be appropriate in 
different phases of the life cycle. 

(ii) Nature of software development. The process of software development has 
considerable effect on the evolution of software reliability notions. Software 
generation grows through a sequence of less reliable steps. User needs are 
translated into formal or informal requirements. The requirements are then 
transformed into formal specifications. These may vary during the development 
phase resulting in inconsistencies. Further, some of the requirements may involve 
solutions that are not known or concepts that are not formalizable. In view of these, 
software dependability depends critically on the reliability of the development 
process, which cannot be quantified easily. 

(iii) Failure severity classification: All failures are not identical nor are the bugs 
causing them. It is convenient to classify software failures as critical, major and 
minor on the basis of the consequences associated with the failures. An example of 
a minor failure is a misspelled or badly aligned output and it may just cause 
annoyance to the user. A major failure may be an irrevocably damaged data base 
and a critical one is the failure of a control task designed to prevent an accident in a 
nuclear plant. It may be appropriate to define several software reliability measures 
such as 

R\(t) = P{no critical failure in interval [0, £]}, (4) 

R2(t) — P{no critical or major failure in [0, /]}, (5a) 

R3(/) = P{no critical, major or minor failure in [0, /]}. (5b) 

The reliability measure R\(t) is easily seen to be a safety measure. 

(iv) Exposure period: It is often understood that reliability is a perception of the 
change of a system’s quality with time. Hardware reliability is adequately 
characterized by the random life time (or time-to-failure) of an item. rlhe choice of 
a suitable random variable is complicated in software reliability. There are many 
time variables of interest in the software life cycle such as operating time, calendar 
time during operation, calendar time during development, working time (man¬ 
hours) during coding, development, testing and debugging phases and the 
computer test times throughout the various stages of the program. A possible unit 
of time in case of an application program is a “run”, corresponding to the selection 
of a point from the input domain (see § 4.2) of the program. The reliability over / 
runs, R(i), is given by 

Rif) — P{no failure over i runs}. (6) 

Assuming that inputs are selected according to some probability distribution 

function, we have 

R( 0 = [«(!)]' = R‘, (7) 
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where R = R( 1). We may define the reliability as follows: 

R = 1 —lim (riJn), (8) 
n —> sc 

where, n = number of runs and rif = number of failures in n runs. Several 
questions arise in using (8) for reliability estimation. In the testing phase, successive 
runs are to be selected with distinct inputs suitable for exposing certain types of 
faults as part of a testing strategy. Assumptions are to be made regarding whether 
modifications are allowed between successive tests after an error is exposed. For 
some programs (e.g. operating systems), it is difficult to determine what constitutes 
a run. In such cases, the unit of exposure period is either the calendar time or the 
CPU time. 

R(t) = Reliability over t seconds 

= P{no failure in interval [0, r]}. (9) 

(v) Structure of software: A great achievement of the hardware reliability theory is 
that the system reliability measure incorporates both the stochastic information 
about component failure behaviour and the deterministic structural information 
which relates the status of the components and the system in the form of reliability 
block diagrams, structure functions and fault trees. In contrast, it is more difficult 
to visualize the components of a program and the structural relationships between 
the components and the system from a reliability point of view. While the 
instruction may be viewed as a basic component of a software system, it is more 
appropriate to think of large programs as composed of separately compilable 
subprograms called “modules”. The complex structure of software does not permit 
simple relationships between the system reliability, the module reliability and the 
instruction reliability as in the case of hardware. It is easy to visualize some 
structural relationships, in case of such constructs as recovery blocks or Ar-version 
programming. Additional modelling studies are needed to relate the complexity 
measures of software with software system reliability. A class of models called 
micro-models have been proposed to take into account the program path structure 
in the execution. 

(vi) What leads to a software failure and what are the quantities to be 
measured?: These are the fundamental questions to be answered in order to arrive 
at acceptable software reliability models 

A. Failure modes: Hardware components normally fail due to the following 
causes-poor quality of materials and fabrication, overload of components and 
wear due to old age or wearout. It may be argued that all but the wearout mode 
apply equally well to hardware and software. The analog of poor quality fabrication 
is either a typographical error eluding a compiler check or inclusion of the wrong 
version of a subroutine. Overload occurs because of faster inputting of data at 
terminals or because of the number of terminals approaching the maximum limit in 
a time-shared environment. However, most frequently, the software failures are 
due to man-made design faults unlike hardware systems where such faults are rare. 

Is the reliability of a program determined by the number of bugs (faults) in it? The 
early bug counting models of software reliability are based on this view. 
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B. Fault seeding: Estimating the number of remaining faults in a program on the 
basis of the number of already observed and corrected faults is often not a 
straightforward proposition. An empirical approach proposed was to seed the 
program with a number of known faults. The program is tested and the observed 
number of exposed seeded and indigenous faults are counted. From these an 
estimate of the fault content of the program prior to seeding is obtained and this is 
used to estimate the software reliability. The basic assumptions are that seeded 
faults are distributed uniformly in the program and that both seeded and 
indigenous faults are equally likely to be detected. 

C. Times between failures: An alternative to bug count or failure count is to 
measure the sequence of failure times (or failure intervals). We may assume that 
the time between successive failures obeys a distribution whose parameters depend 
upon the number of remaining faults in the program. This provides an alternative 
framework for model development. 

D. Test inputs: It is easy to see that a program with two bugs in a little exercised 
portion of a code is more reliable than a program with only one more frequently 
encountered bug. In other words, the perceived software reliability depends upon a 
subset of inputs representative of the operational usage of the program. In § 4.2, 
we describe a conceptual model of software failures which leads to another class of 
models (called the input domain based models) for software reliability assessment. 

(vii) Meeting software dependability specifications: Given that dependability 
criteria are to be imposed on software systems, there are three main ways which 
when used together ensure that the required standards are met: (1) fault 
avoidance-development of design methodologies and environments in which the 
design faults are eliminated or reduced significantly; (2) fault detection and 
correction-management of development, testing and validation phases with design 
reviews, code inspection, program analysis and testing, debugging, verification and 
data analysis and modelling for dependability prediction; and (3) fault tolerance- 
employment of defensive programming techniques based on redundancy such as 
design diversity and multiversion programming. 

4.2 Behaviour characterization of a software system 

The most widely used conceptual model of software is the input-program-output 
model (Littlewood 1980, see figure 2a). The program P is a mapping from an input 
space, /, to an output space, 0, i.e. P:I —» 0. Let O' be the subspace of erroneous 
outputs, defined with respect to the specification of P, and let T be the subspace of 
erroneous inputs such that O' is its image through P. For a (hypothetical) error- 
free program, the subspace /' will be empty. A failure occurs when the program 
receives an input from /', which is selected by some (possibly random) mechanism. 
The situation models the “input uncertainty” leading to system failure (Laprie 1984). 

Let us now consider two versions P(l) and P(2) of the same program, written 
from the same specifications. They have the same input space, /, the same output 
space, O, and the same subspace of erroneous outputs O'. The two programs differ 
in the way they partition the input space into a subset /', which will lead to failure 
and its complement (see figure 2b). The situation shows up the “program 
uncertainty” component of software unreliability. A sequence of programs P( 1), 
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b) 

Figure 2. (a) Failure behaviour of a program, (b) Failure behaviour of two versions of 

the same program. 

P(2), . . . , P(m), . . . , each of them differing from its predecessors by the 
corrections which have been performed, may now be considered. The result of this 

debugging process itself is unpredictable and the sequence /'(l), /'(2), . . . , 
/'(m), . . . , corresponds to the above sequence of programs. The programmer's 
intention is to obtain /'(i) C /'(/— 1) for all / > 1, but this cannot be guaranteed. 
This characterization of the software failure process shows up the clear distinction 
between (i) the behaviour of the program to failure and (ii) the failure restoration 
behaviour. This is used in § 4.3d to evaluate the dependability of software in the 
operational phase. Dependable programs can be defined in this framework. A 
program may be designed to give specified service in a portion of the input domain 
and indicate the user when an input from an exceptional domain is encountered. 

4.3 Software reliability models 

The assessment of software reliability is important right from the development 
phase of the software life cycle. It has to be demonstrated to the user at the time of 
delivery that the software has the fewest number of faults. Also the cost of 
detecting and correcting faults via testing increases rapidly with the time to their 
discovery. A number of models have been proposed in the literature for 
characterizing (measuring, estimating and predicting) software reliability. The 
basis of many of these models has often been viewed with considerable skepticism 
and it has been argued that it is more important to prove that the software meets 
(or does not meet) its requirements specification. The first difficulty with this latter 
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approach is that the requirements specification itself may be unreliable, incomplete 
and may change with time. Secondly, current program verification techniques 
cannot cope with the size and complexity of software for real-time applications. 
Exhaustive testing is also ruled out given the larg number of possible inputs, 
limited resources (time and money) allowed for testing, and also because of lack of 
realistic inputs (e.g. as in a missile defence system). The only feasible approach for 
assessing software reliability, at present, would appear to be using the existing 
models. 

It is worthwhile to remember that the main aim of modelling is to obtain an 
abstraction of the behaviour or structure of a real system or a process. There are 
conflicting requirements such as accuracy, simplicity, ease of validation and ease of 
data collection in choosing a model and it is also true that any one model is not 
equally applicable in all conceivable situations. We shall describe several 
representative models for software reliability in the context of a particular phase of 
the software life cycle, where they can be most useful (Goel 1983, 1985; Troy & 
Moawad 1985). 

4.3a Development phase: In this phase, the software system is designed as per 
requirement specification. The program is debugged and tested. Software 
reliability may be quantified by modelling the process by which the program errors 
are corrected in the debugging phase. The reliability is related to the number of 
remaining errors in the program. The early models of Jelinski-Moranda and 
Shooman belong to this class of error counting models (Shooman 1983). If we assume 
a perfect debugging process, a previously fixed error does not surface again and a 
corrective action does not introduce new errors. In such a case, the reliability of a 
program increases in the development phase, and these models are commonly called 
reliability growth models. These are used to predict the reliability of the software 
system on the basis of the error history in the development phase in the form of 
error count or failure interval data. 

Model A. Shooman model of error removal: This models the dynamics of the 
debugging process. It is assumed that all software errors lead to system failure. No 
differentiation is made between errors on the basis of their severity or the amount 
of redesign effort needed to rectify these errors. Data is collected regarding the 

number of errors removed in the interval [0,r], £,.(r), where ris the debugging time 
in months, and the error removal rate is given by, 

r(r) = d Er{T)ldT 

Let I = total number of machine language instructions, then p(r) = r(r)l I 
= normalized error removal rate, and e(r) = fr0p(x)dx = normalized total 
number of errors removed. Figure 3 shows the cumulative normalized error curve. 
We observe that the number of remaining errors is given by 

£j(t) = Et-Ec(t). (10) 

Normalizing this by dividing throughout by I, we obtain 

£i(t) = (Erll) - (Ec(r)lf) = (Et/I) e,(r). (11) 

A tempting hypothesis at this stage is to assume that the rate of error detection (and 
correction) is proportional to the number of errors remaining in the program. 
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6(j(t) = 6c(X) = number of detected and corrected errors 

Figure 3. Error removal in the development phase. 

d£d(T)/dr = dec(r)dr = k[(ET/I) - ec(r)], 

where A: is a constant of proportionality. Hence 

[dec(r)/dr] + K[ec(r)\ = k[Er/I] and ec(0) = 0. (12) 

The solution of this equation is 

sc(t) = (Et/I)[ \-e-kr). (13) 

This is called the exponential error removal model. Several such models can be 
formulated based on different assumptions of error generation and correction. 

We assume that software errors in operation occur because of the occasional 
traversing of a portion of a program containing a hitherto undetected bug. The 
hazard rate h(t) is related to the number of remaining bugs in the program, £\{t) in 
(ii). 

MO = = y, (14) 

where y is a constant for a given r. The corresponding software reliability is 

R = exp[- yt\. (15) 

Model B. The general Poisson model: This is also a bug counting model in which it 
is assumed that all errors have the same failure rate </>. If Ay is the failure rate of the 
program after the yth failure, N is the number of bugs originally present, My is the 
number of bugs corrected before the yth failure, and after the (/- l)th failure, the 
failure rate Ay is given by (Goel 1983). 

Ay = (N- Mj)(f). (16) 

The software reliability is given by the formula 

R,(t) = e^p[— <t>(N — (17) 
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In (17), a is a constant. In this model, the assumption that all errors have the same 
failure rate is hard to justify. In fact, earlier errors have a greater failure rate and 
are detected more easily. 

4.3b Testing phase: It may be argued that in the final testing and validation phases, 
the performance of a program as measured by the times between successive failures 
is more important than its state as measured by the number of residual bugs. 
Littlewood (1980) proposes a model in which each bug is assumed to cause software 
failures randomly in a Poisson manner, independent of other bugs in the program.. 

Model C. Time between failures model: Consider a typical history of software 
failures as shown in figure 4. 7, is the execution time of the program between the 
(/— l)th and the ith failures and A, is the failure rate of the program when (/— 1) 
failures have occurred [i.e. (/— 1) bugs removed, leaving (N— /+ 1) bugs]. If the 
rate of occurrence of the failures for the yth bug is a random variable vr having the 
same distribution for all y, the failure rate A, of the program is the random variable 
given by 

A,- = v{ + v2 + . . . + vN_i+ ,. (18) 

{vj} is assumed to be a sequence of gamma random variables. The first parameter of 
the distribution records the way in which bugs in a program are eliminated with 
certainty when they produce failures. The parameter is of the form (N — i+ lL*. 
The second parameter is of the form, fi + ti+t2 + • • T,_i, which represents the 
belief that the bugs which have survived for a long time are, possibly, ones with a 
small occurrence rate. The distribution of a single bug is gamma with parameters a 

and (3. 

The hazard rate, /?(f), of the program at the instant marked NOW in figure 4 [i.e. 
between (/ — 1 )th and ith failure] is given by 

h{t) = [(N — / + l)o;]/(/3 4-1\ + t2T . . .+^/_i). (19) 

Littlewood also suggests estimation of these model parameters using a Bayesian 
approach. 

Model D. Littlewood-Verral model: Successive execution times between failures 
(see figure 4) are assumed to be exponential random variables, T,, 73, 73. 
7/, .... The density function of 7, is of the form 

fr,U,\K) = Ajexp(A,f)- (20) 

The parameters A, of the densities are assumed to be independent Gamma random 
variables, with their density functions defined by 

Ti 

now 

N bugs 
+ + 

N-l bugs 

i 
time —— 

:|failure 2nd|failure (i-i)stj 

N j+i bugs 

l ith failure 

Figure 4. A typical history of failure. 
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/t,0;|A,) = [ifc]“A,“ ‘exp[-i/j(/)A,]/r(tt). (21) 

The function ip(i) is an increasing function of i and it describes the quality of the 
programmer and the “difficulty” of the programming task. Using (20) and (21), the 
PDF for Tt which is not directly conditional upon i can be shown to be a Pareto 
distribution of the form 

= a[<K0]"/[f/+ (22> 

The reliability growth arising from the debugging process is represented by the 
growth function, <//(/). Some method of statistical inference is used to estimate this 
function <//(/) and also the parameter a. We may, for example, assume ijj(i) of the 
form (Littlewood 1980): 

«K0 = iSi + fci. (23) 

Thus all the parameters of the models can be estimated from data and the various 
reliability measures can be derived in a straightforward manner. The Littlewood- 
Verral model can easily represent reliability decay caused by imperfect debugging 
as well. 

4.3c Validation phase: Software used for highly critical real-time control applica¬ 
tions must have high reliability. Ideally, we would like to prove that the software 
meets the specifications. In the validation phase, the software is thoroughly tested 
by determining the response of a program (success/failure) to a random sample of 
test cases, specifically for estimating the reliability. The modelling process is used 
to develop a stopping rule for determining when to discontinue testing and to 
declare that the software is ready for use at a prescribed reliability level. Any errors 
discovered in this phase are not corrected. In fact, the software may be rejected if 
even a single “critical” error is discovered. 

Model E. Nelson model'. The reliability of software may be estimated by this model 
in the testing phase (Ramamoorthy & Bastani 1982). 

R = 1 - (nf/n), (24) 

where n is the total number of test cases and nt denotes the number of failures out 
of these n runs. The estimate converges to the true value of reliability in the limit as 
n approaches infinity. Such a simple-minded model suffers from several drawbacks, 
such as (i) a large number of test cases must be used for having a high confidence in 
reliability estimation, (ii) the approach does not consider any complexity measure 
of the program such as the number of paths, and (iii) it does not take into account 
the specific nature of the input domain of the program. 

4.3d Operational phase: The dependability measures of software systems in the 
operational phase may be evaluated by using Markov models. 

Model F. Behaviour of an atomic system (Laprie-Markov model): Laprie (1984) 
assumes that an error due to a design fault in an atomic software system produces a 
failure only if the software system is being executed. He accounts for two types of 



A survey of software dependability 39 

processes: (1) the solicitation process, in which the system is alternatively idle and 
under execution, and (2) the failure process. 

Figure 5 shows the Markov model for the atomic software system. In this model, 
r] is the solicitation rate; I/17 is the mean duration of the idle period. 8 is the 
end-of-solicitation rate; 1/5 is the mean duration of the execution period. A is the 
failure rate; 1/A is the mean latency of the system. The system reliability 
R(t) = Pi(t) + P2(t), where Pft) = P {system is in state i at time t}. R(t) is easily 
calculated by solving the Markovian state differential equations obtained from 
figure 5. By assuming that the duration of the execution period is negligible in 
comparison with error latency, i.e. 8> A, and (17 + 5) A, it may be shown that 

R(t) = exp [17/(5+ v)] = exp[—7rAf], 

where tt = (l/5)/[(l/5) + (I/17)] and MTTF = 1/ttA. 

Model G. Markov model of a complex software system: A complex software system 
is assumed to be made up of n software components, of failure rates A,, i = 1, 
2, . . . , n. The transfer of control between components is assumed to be a Markov 
process, whose parameters are: 1/5,, mean execution time of component i, 

i = 1,2, . . . , n and q,y = P {component j is executed after component /|no failure 
occurred while executing component /}. The Markov model of the system is an n +1 
state model, where the system is UP in the first n states (component i executed 
without failure in state i) and the (« + l)th state is an absorbing state, the down 

state. The Markov chain model could be a starting point for reliability modelling of 
complex software systems (Laprie 1984). 

4.3e Maintenance phase: In this phase, addition of new features to the software 
and improvements in the algorithms can be considered. These activities can perturb 
the reliability of software. Most software reliability models assume that the 
efficiency of debugging is independent of the system’s reliability. Not only is 
debugging imperfect, but the imperfection increases with time. The longer the 
system is in operation, the subtler the remaining bugs are and these cannot easily be 
fixed by a less insightful debugger. Both these things lead to a constant number of 
bugs in the system after some time. In the maintenance phase, if we combine the 
continual modification of the program to accommodate new requirements with the 
subtlety of the remaining bugs and the decreased efficiency of the available 
debuggers, we can see that the number of bugs increases eventually to a point 
where the program must be scrapped. With maintenance included in the theory of 
software reliability, the theory should, therefore, predict that the software does 
wear out, in the sense that it is no longer economically modifiable. 

idle software executed 
software 

tailed 
state 

Figure 5. Markov model of the failure behaviour 

of an atomic software system. 
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4.3f Criteria for model comparisons: The proliferation of software reliability 
models has caused considerable confusion to software engineers and managers. A 
decision to choose a particular model in a given context should be based on the 
following criteria. 
(i) Predictive validity. The model should be capable of predicting future failure 
behaviour during either the development phase or the operational phase from the 
present and the past failure behaviour in the respective phase. The random 
processes underlying software failures can be described either in terms of the 
failure intervals (measured in calendar time or execution time) or in terms of 
counting the errors causing failures. The most general description concerning these 
processes is given by the probability distribution functions of the several random 
variables (joint and marginals). Appropriate dependability measures may be 
obtained from these. At the present time, it appears that error counting approaches 
are more practical for use (Troy & Moawad 1985). 
(ii) Capability or utility: The capability or the utility of a model should be judged 
on the basis of its ability to give sufficiently accurate estimates of quantities such as 
the present reliability, the MTTF, the number of residual faults, the expected date of 
reaching a specified reliability goal, the expected cost for reaching a dependability 
goal and the estimates of human and computer resources needed to achieve this 
goal. 

(iii) Quality and modelling assumptions: Modelling involves many simplifying 
assumptions as it attempts an abstraction of a real process. These assumptions need 
to be validated based on the data available. While the axiomatic theories adopt the 
Leibnizian philosophy “truth is in the model”, statisticians take a Lockean 
approach “truth is in the data”. We believe that the Kantian statement, “truth is 
not entirely in a model or in data but emerges from the interaction of model and 
data”, should be the natural choice of the software engineer in selecting a software 
reliability model. The process of enquiry gets into a cycle of hypothesize-measure- 
analyse-predict steps (Churchman 1971). Troy & Moawad (1985) recommend the 
validation of modelling assumptions at conceptual, structural and operational levels 
and compare the models on the basis of the components of inputs, outputs, 
estimators of parameters, hypotheses involved and mathematical formulation. 
(iv) Applicability. A model should be judged on the basis of the degree of 
applicability across different software products (size, structure, function), different 
operational environments, different life cycle phases and different types of 
reliability behaviour (reliability growth and decay). 
(v) Simplicity. The model should be conceptually simple and should permit 
inexpensive data collection. 
(vi) Program complexity and structure: It is reasonable to assume that the software 
cannot be treated as “atomic”, meaning that it is an indivisible unit. The structure 
of the software system, composed of separate units or modules, is to be taken into 
account in a more meaningful way than is being done presently. The system 
structure changes during the development phase, and dependability modelling 
should take into account the evolution of the system structure. 

The study of Troy & Moawad (1985) represents a step in the direction of a 
systematic comparison of the well-known Musa (1984) and Littlewood-Verrall 
models on the basis of the criteria listed above using RADC/DAC database. Goel 

(1985) recommends a step-by-step procedure for developing and choosing 
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Table 2. Steps in software reliability assessment 

Step Activity 

1 Study software failure data 

2 Choose a reliability model based on the life cycle phase 

3 Estimate model parameters using a method such as maximum likelihood estimation 
4 Obtain the fitted model 

5 Perform goodness-of-fit test 

6 - Go to step 2 if the test rejects the model and repeat through step 6 with another model or 
after collecting additional data 

Decision making regarding the release of the software product or continuation of the testing 
process 

appropriate models for software reliability assessment. Table 2 summarizes these 
steps. 

5. Software fault-tolerance 

The tolerance of design faults, especially in software, is a more recent addition to 
the objectives of fault-tolerant system design. The two currently identified 
strategies of achieving fault-tolerance in software systems are recovery blocks and 
design diversity. 

5.1 Recovery blocks 

A block of a program is any segment of a large program (e.g. a module, a 
subroutine, a procedure or a paragraph) which performs some conceptual 
operation. Such blocks also provide natural units for error-checking and recovery. 
By adding extra information for this purpose they become recovery blocks. The 
basic structure of a recovery block is shown in figure 6. A recovery block consists of 
an ordinary block in the programming language (the primary alternate), plus an 
acceptance test and a sequence of alternate blocks. The acceptance test is just a 
logical expression that is to be evaluated upon completion of any alternate to 
determine whether it has performed acceptably. If an alternate fails to complete 
(e.g. because of an error or exceeding of a time limit) or fails the acceptance test, 
the next alternate (if any) is entered. However, before a further alternate is tried, 
the state is restored to what it was just prior to entering the primary alternate. 

A: ensure T 
by P : begin 

< program text > 
end 

else by Q : begin 
< program text > 
end 

Figure 6. Recovery block struc¬ 

ture (72 acceptance test, P: prim¬ 

ary alternate and Q: secondary 

alternate). else error 
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When no further alternates remain after a failure, the recovery block itself is 
deemed to have failed (Randell 1975). 

Laprie (1984) models the design process of a recovery block, and evaluates its 
reliability in a Markovian framework. He notes the important role played by the 
acceptance test in the failure process of a recovery block. It is not hard to give a 
structural reliability interpretation for this. A recovery block with three alternates 
is analogous to a system with triple modular redundancy (tmr). The acceptance 
test is a critical component of the structure similar to that of a voter in a TMR 

system. 

5.2 Multiple computations 

The use of redundant copies of hardware, data and programs has proven to be quite 
effective in the detection of physical faults and subsequent recovery. This approach 
is not appropriate for tolerance of design faults that are due to human mistakes or 
defective design tools. The faults are reproduced when redundant copies are made. 

A. Design diversity: Design diversity is the approach in which the hardware and 
software elements that are due to be used for multiple computations are not copies, 
but are independently designed to meet the given requirements. Different 
designers and tools are employed in each effort and commonalities are systemati¬ 
cally avoided. The obvious advantage of design diversity is that reliable computing 
does not require the complete absence of design faults, but that designers should 
not produce similar errors in the majority of designs. 

A very effective approach to the implementation of fault-tolerance has been the 
execution of multiple (TV-fold with TV^2) computations that have the same 
objective: a set of results derived from a given set of initial conditions and inputs. 
Two fundamental requirements apply to such multiple computations: 1) The 
consistency of initial conditions and inputs for all TV instances of computation must 
be assured, and 2) A reliable decision algorithm that determines a single decision 
result from the multiple results must be provided. 

The decision algorithm may utilize a subset of all TV results for a decision; e.g., 
the first result that passes an acceptance test may be chosen. The decision may also 
be that a decision rule cannot be determined, in which case a higher level recovery 
procedure may be invoked. The decision algorithm itself is often implemented N 
times - once for each instance of computation that uses the decision result. Only 
one computation is then affected by the failure of one decision element (e.g., a 
majority vote). Multiple computations may be implemented by TV-fold replications 
in three domains: time (repetition), space (hardware) and program (software). 
Notation: The reference or simplex case is that of one execution (simplex time IT), 
of one program (simplex software IS) on one hardware channel (simplex hardware 
1H), described by the notation: 1T/1S/1H. Concurrent execution of TV copies of 
program on TV hardware channels is 177NS/NH. Examples of such systems are the 
space-shuttle computer (TV = 4), sift (TV^3), FTMP (N = 3) and No. 1 ESS 

(Electronic Switching System - AT & T Bell Laboratories) (TV = 2) (Siewiorek 
& Swarz 1982). The TV-fold time cases employ the sequential execution of more 
than one computation. Some transient faults are detected by the repeated 
execution of the same copy of the program on the same machine (2T/IS/IH). 

Faults that affect only one in a set of TV computations are called “simplex” faults. 
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A simplex fault does not affect other computations although it may be a single or a 
multiple fault within one channel. Simplex faults are effectively tolerated by the 
multiple computation approach as long as input consistency and an adequate 
decision algorithm are provided. The M-plex faults (2<M<N) that affect M out of 
the N computations form a set for the purpose of fault-tolerance. Related M-plex 
faults are those for which a common cause that affects M computations exists or is 
hypothesized. 

B. N-version programming: An effective method to avoid identical errors that are 
due to design faults in /V-fold implementations is to use independently designed 
software and/or hardware elements instead of identical copies. This approach 
directly applies to parallel systems 177/VD57AT7, which can be converted to 
177NDS/NH for /V-fold diverse software or 1T/NS/NDH for yV-fold diverse 
hardware of 1T/NDS/NDH for diversity in both hardware and software. The 
sequential systems (/V-fold time) have been implemented as recovery blocks with N 
sequentially applicable alternate programs (NT/NDS/IH) that use the same 
hardware. An acceptance test is performed for fault detection and the decision 
algorithm selects the first set of results that pass the test. 

/V-version programming is the independent generation of N> 2 software modules 
called “versions”, from the initial specification. “Independent generation” here 
means programming efforts carried out by individuals or groups which do not 
interact with respect to the programming process. Wherever possible, different 
algorithms and programming languages or translators are used in each effort. The 
goal of the initial specification is to state the functional requirements completely, 
while leaving the widest choice of implementations to the N programming efforts. 
An initial specification defines: (1) the function to be implemented by an 
/V-version software unit, (2) data formats for the special mechanisms: decision 
vectors (d-vectors), decision status indicators (^-indicators), and synchronization 
mechanisms, (3) the cross-check points (cc-points) for d-vector generation, (4) the 
decision algorithm, and (5) the responses to the possible outcomes of decisions. The 
term decision is used here as a general term, while comparison refers to the N = 2 
case and the term voting to a majority decision with N > 2. The decision algorithm 
explicitly states the allowable range of discrepancy in the numerical results. 

It is the fundamental conjecture of the vV-version approach that the independ¬ 
ence of programming efforts will greatly reduce the probability that software design 
faults will cause similar errors in two or more versions. Together with a reasonable 
choice of d-vectors and cc-points, the independence of design faults is expected to 
turn /V-version programming into an effective method to achieve design fault- 
tolerance. The effectiveness of the entire approach depends on the validity of this 
conjecture. Experimental investigations are necessary to demonstrate this validity. 
The following questions remain to be answered: (1) Which requirements (e.g., 
need for formal specifications, choice of suitable type of problems, nature of 
algorithms, timing constraints, decision algorithms etc.) have to be met for the 
/V-version programming to be feasible at all, regardless of its cost? (2) What 
methods should be used to compare the cost and the effectiveness of this approach 
to the two alternatives: single version programming and the recovery block 

approach? 
Avizienis (1985) discusses these issues and the experiments at UCLA. McHugh 
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(1984) describes a large scale experiment conducted by several universities (North 
Carolina State University, University of California at Los Angeles, University of 
Illinois, and University of Virginia) to determine the effect of fault-tolerant software 
techniques under carefully controlled conditions. Graduate students from these four 
places produced multiple versions of the same function and the resulting code was 
combined in a variety of fault-tolerant configurations such as recovery blocks and 
^/-version schemes. The idea is to avoid correlated errors in the codes produced. A 
surprising outcome was that programmers at two universities generated identical 
faults. Multiversion software has been proposed for use in the safety control system 
of nuclear reactors. The outputs of these multiple versions are operationally 
subjected to a majority voter and the system gives incorrect outputs whenever a 
majority of its component versions fail. An unexpected outcome from recent 
experimental studies is that totally uncorrelated design faults in the software 
appeared as coincident failures in the application environment with two or more 
versions failing when operating on the same input. It is therefore necessary to study 
conditions under which employment of multiversion software is a better strategy 
than use of a single version (Eckhardt & Lee 1985). 

C, Consensus protocols: Voting is used by a wide variety of algorithms in 
distributed systems to achieve mutual exclusion. For example, consider a restricted 
operation like updating a database. Each computer or node participating in the 
algorithm is given a number of votes out of a total of T votes. Only a group of nodes 
with a majority of votes performs the updating. Similarly in commit protocols, 
voting ensures that a transaction is not committed by one group and aborted by 
another. It is possible to optimize the reliability of critical operations provided by 
voting mechanisms in DCS by using consensus protocols. These involve optimal 
vote assignment after efficiently partitioning the network into groups of nodes 
(Garcia-Molina & Barbara 1984). 

6. Other dependability factors 

6.1 Software maintainability 

A question often asked in software engineering is “How is a software system 
modularized so that the resulting modules are both testable and maintainable?” 
The issues of testability and maintainability are important dimensions of 
dependability if we recognize the fact that half of development time is spent in 
testing while maintainance has the potential of absorbing a considerable portion of 
the budget. Thus testability is important in the design and testing phases while 
maintainability is important in the operational and maintainance phases of the 
software life cycle. 

A hardware system is usually visualized as performing an alternating movement 
between two states, UP and DOWN, separated by the events of failure and 
representation. While reliability is the measure of the random time duration during 

which the system is continuously in the UP state, maintainability refers to the time 
spent in DOWN state. MTTR (mean time to repair) characterizes maintainability for 
software systems. Laprie (1984) recommends a similar model for software (valid, at 
least, for critical software). Characterizing the maintainability of a general software 
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system is complex. One approach suggested in the literature is based on using the 
complexity metrics of a program. The complexity is a measure of the effort 
required to understand the program and is usually based on the control or data flow 
of the program (McCabe 1976). The self-descriptiveness of a program is a measure 
of how clear the program is, i.e., how easy it is to read, understand and use. Other 
measures such as extensibility (a measure of the extent to which the program can 
support the extension of critical functions), stability (resistance to amplification of 
changes), accessibility (ease of access of a program module) and testability (effort 
required for testing) have also been used to assess a program’s maintainability. 
Many of these measures can be defined using the representation of the program as 
a directed graph (Mohanty 1979). An alternative approach which shows promise is 
to arrive at a measure of program difficulty as a function (e.g. a simple sum) of the 
difficulties of its constitutent elements. Berns uses this approach to arrive at the 
difficulty measure of a fortran program by assigning weights to its elements (e.g. 
statement types, operators, symbols etc.) (Berns 1984). 

6.2 Software availability 

While the definition of availability as given in § 3 appears satisfactory, its 
evaluation poses some problems for software. The failure-restoration model 
suggested by Laprie (1984) appears justifiable only in the case of critical software. 
In case of noncritical software, correction of errors can be performed on a different 
copy of the software. The classical availability expression 

A = MTTF/(MTTF + MTTR) 

is therefore applicable in the case of either critical software or in the early 
development phase. 

6.3 Software safety 

The increased use of computers in life critical applications has brought importance 
to a relatively unexplored facet of software development-software safety (Leveson 
1984). We may define safety as follows. 

Definition: Software safety is the probability that a given software system operates 
for some time period without an accident resulting in injury or death to humans 
interacting with the system or unintentional damage to the equipment or data 
stored, caused by a software error on the machine or the distributed environment 
for which it is designed. 

The system safety is a global dependability measure (figure 1). To determine 
safety formally, appropriate mission accomplishments are to be defined. We may 
note that every failure is not safety-related. Only a subset of failure states are of 
interest as seen from the following example. 

Example 3 (Safety of an aircraft flight): 
While evaluating the performability of an aircraft, it is usual to consider the 
following accomplishment set (Pedar & Sarma 1981): 

A = {at\i = 1,2,3,4,5}. 
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Each cii denotes a distinguishable level of accomplishment, given by 

ax — a fuel-efficient and safe mission from the source to a destination 

airport, 

a2 = a safe mission from source to destination but the fuel management 
task has failed, 

a2 ~ a fuel-efficient flight but the flight is diverted to a different airport 
because the autolanding failed, 

a4 = a safe mission with diversion and with failures of fuel management 
function, 

as = a fatal crash. 

The performability is a combined measure incorporating performance and 
reliability and is used for degradable computer systems. In this example, only the 
accomplishment level denoting fatal crash is related to the safety of the mission. 

In the absence of adequate safety specifications, even with the system operating 
satisfactorily with respect to availability and performance specifications, the system 
might be operating in accident-prone conditions. Safety is of prime concern both 
during the normal operation of the system and in the presence of undesirable 
events such as module failures and environmental causes. 

7. Dependability issues in real-time process control 

A control system, or process, can be divided into the controller and the controlled 
plant. A control design job can be broadly defined as specifying and implementing 
the functions that drive the inputs so that a plant performs a specified process (or 
completes a prescribed mission). Design may be broken into two successive tasks, 
control engineering and software engineering. 

The dynamics of the plant are described by the state equations, relating the 
inputs, the outputs and the internal state variables of the plant. The controller often 
includes a model of the plant (either an observer or a Kalman filter necessary for 
implementing optimal and adaptive control functions). The determination of the 
control law is in the domain of control engineering. Software engineering 
implements the specified control law as an executable computer program, 
accommodating such criteria as dependability and flexibility. 

The control theory component refers to the feedback control action of moderate 
complexity and high reliability. The needed response times are from seconds to 
minutes in the process control context. In contrast, the man/machine system is of 
the open loop control variety and deals with process variable display systems and 
alarm systems. The possible states and transitions are shown in figure 7. The 

required response times are tens of minutes. The fault-tolerant trip systems are 
ultra-reliable, closed-loop control systems which initiate drastic actions such as the 
fail-safe plant shut down. The ability of the process to either survive in the face of 

failures, errors, and design flaws or to be safely shut down is to be evaluated. 

Appropriate measures for dependability specification and evaluation of process 
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major plant or 

1- normal running 

4 - safe shut-down 

2 - minor upset 3-major upset Figure 7. State transitions in 

5-accident process control systems. 

control systems and associated control software can be defined only by complete 
mathematical modelling of the process, including the plant, and the controller, 
including the implementation of the control law (Viswanadham et al 1987). 

All the control functions are to be taken into account in the evaluation of 
software dependability measures in the process control context. It is assumed in the 
subsequent analysis that all these are implemented in software. The basic control 
software tasks involve the continuous time process control algorithms. An 
additional set of software tasks include the open-loop functions of data instru¬ 
mentation, data logging and alarm systems for the man-machine subsystem. The 
critical set of software tasks involve software-based safety (trip) procedures 
involving safe shut down of the process. Software safety study essentially involves 
reliability evaluation, verification, and validation of this particular software task. 

The main issue in the design of software is to establish the safety boundary 
between the control in the normal or minor upset operating region and the 
automated protection system. This decision regarding the operating region is based 
on multi-sensor data evolving in time. The decision procedures invariably involve 
some type of sequential probability tests (SPRT). As in any hypothesis testing 
situation, there are chances of two types of errors (the miss and the false alarm) 
with different costs of consequences. The miss may mean an increased risk of a 
potential disaster while a false alarm might mean economic penalty due to 
unwarranted plant shut down. In some cases, it may be worthwhile to delay the 
decision by a small amount of time so that further data may be accumulated. 
System level safety measures include the reliability of this decision making 
capability. 
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Abstract. The absolute correctness of a database is an ideal goal and 
can not be guaranteed. Only a lower level of database consistency can 
be enforced in practice. We discuss the issue of database consistency 
beginning with identification of correctness criteria for database 
systems. A taxonomy of methods for verification and restoration of 
database consistency is used to identify classes of methods with a 
practical significance. We discuss how fault tolerance (using both 
general and application-specific system properties) allows us to maintain 
database consistency in the presence of faults and errors in a database 
system and how database consistency can be restored after site crashes 
and network partitionings. A database system can ensure the semantic 
integrity of a database via verification of a set of integrity assertions. We 
show how to efficiently verify the integrity of a database state. Finally, 
batch verification of integrity assertions is presented as one of the 
promising approaches that use parallelism to speed up the verification. 

Keywords. Database crash and recovery; database systems; software 
fault tolerance; semantic integrity. 

1. Introduction 

1.1 Motivation and goal of this paper 

High quality data and continuous access to them are the essential elements of a 
reliable database system. There are many techniques and tools to increase system 
reliability. In the context of a database system they all serve one purpose: 
preservation of consistency of data stored in a database. 

We quote significant results in the area of system reliability, and interpret these 
results from the point of view of their contribution to database consistency. There is 
no attempt to derive the results or explain their derivation. 

One of the tools used to guard data consistency are integrity assertions 
maintained by an integrity subsystem. An analogy to the role of an integrity 
subsystem in a database system is the function of a chartered accountant (or an 
auditor). We show why an integrity subsystem is used as the last resort, called for 
when all other means of guarding database consistency fail. 
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1.2 Basic notions 

Given an initial database state S{), a database state S is transaction-consistent 

(Eswaran et al 1976) if and only if there exists a sequence of transactions executed 

serially (one at a time) which transforms S0 into S. 

A database state is integral if all integrity assertions defined for the database 

evaluate to TRUE for this state (some of the synonyms of “integral” are “whole; 
entire; intact,” AHD 1978). An integrity assertion (Fernandez & Summers 1976) is, 
basically, a predicate on database values that prohibits some incorrect combina¬ 
tions of the database values. There are two types of integrity assertions (Ullman 
1980). One type is structural, concerning only equalities among values in the 
database (e.g., functional dependencies) and the second type deals with the actual 
values stored in the database. 

We need to define a number of notions used later in this paper. A fault is defined 
as a malfunction in a hardware, software or human component of the system (e.g., 
design faults) that may cause failures or introduce errors to the system. Errors are 
incorrect entities or pieces of program stored or transmitted within the system, or 
lost entities or pieces of program. A fault causes, directly or through the errors it 
introduces, a failure (crash). A failure (crash) is cessation of a normal (prescribed 
by the specification), timely operation by all or a part of the system, or delivery to 
the outside world of incorrect data (Gibbons 1976; Anderson & Knight 1983; 
Avizienis & Kelly 1984). 

We interpret a detection of a fault or an error at instant t as a failure at instant t: 
the moment it is detected, the system must take some special action and its normal 
operation is disrupted. Note that some failures will become manifest directly 
through detection of faults and not through detection of errors introduced by these 
faults. For example, in the case of a major hardware fault, the fault detection and 
the failure are simultaneous. 

There are two modes of operation after a failure occurs in the system: adaptation 
and recovery (Bhargava & Filien 1987). During adaptation the system attempts to 
remove the errors but ignores the sources of errors, while during recovery it deals 
with the sources of errors. Adaptation contains bypass, when the system removes 
the errors, and restart when the system resumes its (maybe degraded) service. 
Recovery contains repair of the faulty system elements and their reintegration into 
the system to upgrade its level of performance. 

1.3 Paper outline 

The paper is organized as follows. Section 2 presents criteria used to maintain 
database consistency (correctness). Section 3 presents a taxonomy of methods for 
verification and restoration of database consistency and identifies these classes of 
the taxonomy that are practically useful. These “useful” classes are discussed in the 
subsequent sections. Since it is impossible to avoid all failures in a database system, 
we need (a) fault-tolerant techniques to maintain data consistency in spite of 
imperfect system components that generate data errors, (b) techniques to detect 
data inconsistency, and (c) methods to restore data consistency once it is damaged 
or lost. These are the topics of §§4 and 5. Section 6 presents batch integrity 
verification as one of three approaches for verification of data consistency that 
speed up verification by the use of parallelism. Section 7 concludes the paper. 
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2, Correctness criteria for database systems 

In this section we first identify failures that can introduce inconsistencies into a 
database and then consider different criteria used to define consistency of a 
database. 

2.1 Possible failures in database systems 

There are many types of failures that can affect a database system. We classify 
these failures as follows: 

(a) data failure: (i) inconsistent writeset, when the values of a transaction writeset 
(i.e., the set of items updated by the transaction) of a correct transaction is 
incorrect; special cases of this class of failures are system input failures, when a 
transaction “transfers’’ incorrect data from system environment to its own output, 
(ii) database failure, when faults or errors of unknown origin are detected in the 
database, 
(b) transaction failure: (i) internal transaction failure, when, due to faulty 
transaction code, there is a contradiction between the planned and the performed 
activities of a transaction, 
(ii) external transaction failure, caused by mishandling of a correct transaction by 
the database management system; for example, mishandling of a transaction by a 
concurrency controller, a commitment mechanism (an atomicity controller), or a 
transaction abort due to a deadlock, 
(c) configuration failure: (i) host crash (system failure), when the volatile database, 
that is database buffer, is lost (e.g., due to power failure^ memory failure, 
processor failure, software fault), 
(ii) network partitioning, when communication line failures break all connections 
between two or more subsets of system sites; communication line failures that do 
not cause partitionings are ignored, 
(iii) media failure (storage crash), when the stable database, that is database resi¬ 
dent on the secondary storage, or its part is lost due to media malfunction (e.g., 
disk head crash). 

We are interested in the correctness of a database maintained by a database 
system. Correctness of such a database may be damaged in one of the following 
ways: 
(a) incorrect data are introduced into the database directly from the environment 
(via human user, sensors, etc.), 
(b) a faulty transaction performs incorrect updates on a database, 
(c) a transaction is not executed atomically, that is, only some but not all of its 
actions are performed (e.g., in a money transfer transaction only the withdrawal 
ph ase but not the deposit phase in executed), 
(d) incorrect concurrent execution of transactions is allowed, 
(e) host crashes, network partitionings, and media failures affect transaction 

results. 

2.2 Correctness criteria for a database system 

To guard against the damage of database correctness, we need correctness criteria 
for different elements of a database system. First of all we must make the notion of 
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“correctness” more precise. In fact, an absolute correctness of a database or of a 
transaction is an ideal and unobtainable goal, since there are no means of ensuring 
that the whole database and all transactions are perfect (faultless). As a 
consequence, only acceptability (Randell et al 1978), enforcing some lower, 
imperfect standard of behaviour, is a practical notion. We will use the notion of 
data consistency (or, consistency in a broad sense) as a synonym for acceptability of 

data. 
We can discriminate different classes of consistency. The following criteria are 

used in centralized database systems: 

• transaction correctness - ensuring that transactions themselves are acceptable, 
• atomicity - ensuring that a transaction completes all or none of its updates before 
termination; if a transaction is interrupted during its execution, the atomicity 
controller must clean up its updates in one of two ways: (1) either undo all the 
updates that the transaction managed to perform before the interruption, or (2) 
redo all the updates that the transaction did not complete due to the interruption, 
• transaction-consistency - ensuring that concurrently executing transactions pro¬ 
duce only transaction-consistent states, 
• integrity - ensuring that a database may assume only such states as correspond 
to possible real-world states. 

AH of the criteria used in centralized database systems apply to distributed 
database systems as well (even if, due to increased system complexity, fulfilling 
them is more difficult). The additional criterion of mutual consistency of multiple 
copies of data requires that in a quiescent database state eventually all copies of a 
given data item reach the same value. 

Many of the correctness criteria are interrelated. For example there is a clear 
connection between concurrency control and integrity, atomicity and mutual 
consistency etc. 

The above criteria are used to maintain database consistency. Sometimes, due to 
a failure, these criteria can be violated (e.g., faulty concurrency controller does not 
respect transaction-consistency) and, as a result, the database may become 
inconsistent. In such a case, database consistency must be restored via recovery; 
after recovery all the consistency criteria are again satisfied. 

3. Complexity analysis results of methods for verification and restoration of 

database consistency 

In the previous section we have seen a range of criteria used for defining 
consistency of a database. This section proposes a taxonomy of different 
approaches to verification and restoration of database consistency, investigates the 
time complexity of the identified classes of the taxonomy, and identifies the classes 
that can include feasible verification or restoration methods. 

3.1 Illustration of state and history restoration 

To illustrate updates and transactions, we use a graphical representation. Figure 1 
shows a sequence of transactions updating a database with two entities, E\ and E2. 



Enforcement of data consistency in database systems 53 

Figure 1. An illustration of transaction and 

database model. 

We assume that initially both entities have value 0 (point O). The first update 
changes database state from O to A, the next update from A to B etc. For example, 
the first transaction consisting of two updates changes the database state from O to 
B. The trajectory OABCDEFG represents an actual history of transaction 
executions. The conventions introduced in figure 1 are used in the subsequent 
figures. 

During the processing of transactions in a database system, the system uses two 
types of storage media: volatile (e.g., primary memory) and stable (e.g., secondary 
storage) (Lampson & Sturgis 1976). When a system crash occurs, the volatile 
storage may be lost and the state of the stable storage corrupted. The state of the 
system just before (after) the crash is called a before-crasli state (an after-crash 

state). To continue the processing, the system must restore a consistent database 
state. 

State restoration recreates an integral or a transaction-consistent database state, 
in figure 2 these states are donated by o or • (the need for two distinct symbols will 
be revealed later). These states either actually existed in the past (states R, T, G), 
or would actually exist in the future (state A), or are other states that are consistent 
(states P, Q, S, V, W). Among the categories of state restoration are optimal state 

restoration and approximate state restoration. The goal of the former is recreation of 
the consistent database state which is closest to a given after-crash state and the 
goal of the latter is recreation of a state within a specified distance from a given 
after-crash state. In figure 2, for example, optimal state restoration would recreate 
state W. Approximate state restoration could restore any of the states within the 
acceptability limit defined by LFand L2, that is, any of the states T, U, V, W, X. 

Approximate state restoration can be assisted by a log of the actions (in this case, 
updates) performed on the database. We say that the database system has the log 

up to the state S, if the sequence of actions transforming an initial database state S{) 

into a database state S can be recreated by the system on demand. 
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O 0 acceptable database states 

history-preserving database states created by histories 
thatcontain no incomplete transactions 

Let LI and L2 be coordinates of the acceptability limit for an approximate 
restoration and D1 denote the distance from the after-crash state AS to the most 
recent consistent database state recorded on the log (figure 3). (Note that only 
actual past database states are recorded on the log.) A log-assisted approximate 
state restoration is called a backward approximate state restoration if D1 is within 
the limit given by LI and L2 (cf. Randell et al 1978). For example, if 51 is 
recorded on the log, recreation of this state is a backward approximate state 
restoration. 

We call a state history-preserving if it can be reached from the before-crash state 
BS by undoing or completing some of the transactions contained in the actual 
history that created the state BS; this guarantees transaction atomicity. (Whenever 
a transaction is undone, all its dependent transactions, that is transactions that rely 
on data produced by this transaction, are undone as well.) History restoration is 
restoration of a history-preserving state created by a history that contains no 
incomplete transactions. 

Serializability allows for only those interleaving of actions of different transac¬ 
tions that result in the same effects on the database as a serial, that is one-at-a-time, 
execution of transactions. Assuming that the concurrency control mechanism 
allows only for serializable histories (Eswaran et al 1976) (which is most often the 
case), history restoration recreates a history which is serializable. In addition, this 
history contains only completed transactions (atomicity is guaranteed by the 
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database system). Hence, history restoration results in restoring a transaction- 
consistent database state. 

Figure 2 indicates possible goals of history restoration with •. As illustrated, 
history restoration recreates either a state that actually existed in the past (states R, 

T, U) 01 a state that would actually exist in the future (state X). Optimal history 

restoration restores the state U. Approximate history restoration could restore any 
of the states T, U, X. 

Approximate history restoration can be facilitated by a log. Let D2 be the 
distance from the after-crash state AS to the most recent transaction-consistent and 
history-preserving state recorded on the log. A log-assisted restoration is called a 
backward approximate history restoration if D2 is within the limits given by LI and 
L2. For example (figure 3), if the state S2 is recorded on the log, restoration of this 
state is a backward approximate history restoration. 

For most database applications history restoration is the prevailing practice. 
However, state restoration might be sufficient in some systems. A notable example 
is the broad class of real-time systems, including many control systems, exhibiting a 
cyclic nature. For these systems, the state of a process at the beginning of each cycle 
is very similar (Anderson & Knight 1983). Furthermore, missing a few cycles of 
system history is frequently admissible. Therefore, recovery after a crash can be 
implemented by state restoration. 

For some classes there is no difference between state and history restoration. For 
example, since each state recorded on the log is history-preserving, backward 
approximate transaction-consistent state restoration recreating a state S is 
equivalent to backward approximate history restoration recreating the same state 

5. 
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3.2 Assumptions of the analysis 

The complexity analysis uses the following assumptions: 
(a) For a database containing m entities, each database state is represented by an 

ra-dimensional vector of the values of these entities. The initial database state S{) is 
the vector of zeroes, i.e., 50 = 0m. 
(b) For any two database states their distance can be determined. (The distance 
measure can be defined by the database administrator.) 
(c) Integrity of a single writeset of each transaction in verified before this writeset 
is posted to the database and to the log (if the log is used). If a writeset violates 
database integrity, it is rejected (that is, the transaction is rejected). As a 
consequence, each transaction-consistent history-preserving state is integral as 
well. 
(d) Concurrency control mechanism maintains transaction-consistency and mutual 
consistency, and atomicity control mechanism commits fully completed transac¬ 
tions only. 
(e) Each integrity assertion can be efficiently evaluated. 
(f) The system log records the order and identifiers of executed programs. System 

log up to state LS is represented as a sequence of transaction identifiers, such that 
the serial execution of this transaction sequence transforms the initial database 
state into the database state LS. We can say that state LS is recorded on the log. 

None of these assumptions is overly restrictive. Specifically, assumption (e) must 
be honoured if integrity assertions are to be of practical value. 

3.3 Database state verification 

The verification of a database state and restoration of a database state or 
restoration of database history are not trivial tasks. Time complexities for these 
tasks are studied in this and the following subsections. 

The two-dimensional taxonomy of different classes of methods for database state 
verification can be expressed as: 

{NO LOG, LOG} x {INCONSISTENT, INTEGRAL} 

This taxonomy produces four different classes. NO LOG and LOG differentiate 
between verification without and with the assistance of the log. T CONSISTENT and 
INTEGRAL tell whether a given state is to be verified as transaction-consistent or 
integral. For example, the decision problem for the class NO LOG INTEGRAL deals 
in a formal way with the question: “Given an arbitrary database state, is 
verification of its integrity without the assistance of the system log practically 
feasible?” 

Considering these four classes we have shown (Lilien & Bhargava 1985) that: 
(1.) the verification without log whether a database state is transaction-consistent is 
NP-complete; 
(2) the verification without log whether a database state is integral can be decided 
in a polynomial time; 

(3) the log-assisted verification whether a database state is transaction-consistent is 
NP-complete; 

(4) the log-assisted verification whether a database state is integral can be decided 
in a polynomial time. 
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3.4 Database state restoration 

The three-dimensional taxonomy of methods for state restoration can be expressed 
as: 

{NO LOG, LOG} x {OPTIMAL, APPROXIMATE} x {TCONSISTENT, INTEGRAL} 

This taxonomy produces eight different classes. As defined, OPTIMAL and 
APPROXIMATE denote the search for the state which is closest to a given after-crash 
state and a state within a specified distance from a given after-crash state, 
respectively. For example, the class NO LOG OPTIMAL T CONSISTENT deals in a 
formal way with the question “Is restoration of the transaction-consistent state 
closest to a given after-crash state practically feasible if the system log is not used?’* 
Considering these eight classes we have shown (Lilien & Bhargava 1985) that: 
(1) the restoration without a log of the optimal transaction-consistent state is 
NP-hard; 
(2) the restoration without a log of the optimal integral state is NP-hard; 
(3) the restoration without a log of an approximate transaction-consistent state is 
NP-hard; 
(4) the restoration without a log of an approximate integral state is NP-complete; 
(5) the log-assisted restoration of the optimal transaction-consistent state is an 
NP-hard problem; 
(6) the log-assisted restoration of the optimal integral state is an NP-hard problem; 
(7) the Jog-assisted restoration of an approximate transaction-consistent state is an 
NP-hard problem; 
(8) the log-assisted restoration of an approximate integral state is an NP-complete 
problem. 

Among different subclasses of the log-assisted restoration of an approximate 
transaction-consistent or integral state are backward approximate transaction- 

consistent/ integral state restorations (Randell etal 1978). The following results hold: 
(7a) the time complexity of backward approximate transaction-consistent state 
restoration is linear in the number of update records on the log; 
(8a) the time complexity of backward approximate integral state restoration is 
linear in the number of update records on the log. 

3.5 Database history restoration 

The two-dimensional taxonomy of classes of history restoration can be expressed 

as: 

{NO LOG, LOG} x {OPTIMAL, APPROXIMATE} 

Since by assumptions (c) and (e) every state constructed by history restoration is 
transaction-consistent and integral, “T CONSISTENT” and “integral” are omitted 
in the class specification. This taxonomy produces, therefore, four classes. 

Considering these four classes we have shown (Lilien & Bhargava 1985) that: 
(1) the restoration without a log of the optimal history-preserving state is NP-hard; 
(2) the restoration without a log of an approximate history-preserving state is 
NP-hard; 
(3) the log-assisted restoration of the optimal history-preserving state is NP-hard; 
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(4) the log-assisted restoration of an approximate history-preserving state is 

NP-hard. 
The following result holds for a subclass of the log-assisted approximate history 
restoration: 
(4a) the time complexity of backward approximate history restoration is linear in 

the number of update records on the log. 
There is more than just a formal similarity between backward approximate 
transaction-consistent state restoration (see §3.4) and backward approximate 
history restoration, because backward approximate transaction-consistent state 
restoration recreating a state S is equivalent to backward approximate history 
restoration recreating the same state S. 

3.6 Discussion of the results 

The above analysis justifies in a formal way the use of integrity assertions. As 
shown, integrity, in contrast to transaction-consistency, is a practical criterion for 
verification of acceptability of a database state. Of course, the notion of 
transaction-consistency is important as the criterion for concurrency control. Its use 
allows for creation of transaction-consistent database states. Subsequently, these 
states can be recorded on the system log and, when necessary, restored after a 
crash. 

Note that in case of transaction-consistent state verification we mention explicitly 
transaction-consistency but not transaction correctness or atomicity. The reason is 
that we assume that both are ensured by the database system. Similarly, in case of 
integral state verification we mention explicitly integrity but not transaction 
correctness, atomicity, or transaction-consistency. Again, we assume that all three 
are ensured by the database system. Furthermore, we omit here the criterion of 
mutual consistency that must be considered in a distributed database system. 

The analysis also formally justifies the common practice of pre-recording 
database states for their possible restoration in case of a crash If an adequate 
consistent database state is pre-recorded, backward approximate transaction- 
consistent state restoration, backward approximate integral state restoration, and 
backward approximate history restoration all have fast algorithms. Otherwise, 
none of the identified state or history restoration classes has an efficient algorithm. 

4. Maintaining data consistency via fault tolerance 

Since it is impossible to avoid all possible failures in a database system, we need 
solutions that preserve data consistency in spite of failures. To that end, the 
database system should be (a) fault-tolerant: able to adapt to failures and to work 
in a degraded state (that is, with some of its components failed), and (b) able to 
restore a consistent database state through recovery. 

Fault-tolerant system capabilities must be carefully designed and built into the 

system. The two types of fault-tolerance solutions general and application-specific, 
are discussed in §§4.1 and 4.2, respectively. 
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4.1 General solutions to system fault tolerance 

We discuss the fault-tolerant solutions in the context of the correctness criteria 
enumerated in §2 (with the exception of the integrity criterion to which §5.2 is 
devoted). 

4.1a The criterion of transaction correctness: Transaction checks - The criterion of 
transaction correctness ensures consistency of intentions of a transaction (a 
process) with the actions that the transaction actually performs. The intention of a 
transaction is expressed within the program for the transaction by checks or tests 
(Randell et al 1978). Checks (tests) are predicates on the old/new values of the local 
program variables and database entities, which should return the Boolean value 
“TRUE” (indicating error-free condition) when evaluated. For example, a check for 
a sorting transaction may verify whether on the output list some next value is larger 
than or equal to the preceding value. 

A transaction may also faii due not to its intent violation but to faults that 
produce failures indirectly. One example is “cheating” transaction atomicity 
control, for instance, when the “TRANSACTION END” declaration, to be used for a 
proper transaction termination, is misplaced. Checks used for monitoring against 
these indirect faults have to be derived not only from transaction specifications but 
also from requirements for other transaction management subsystems, such as 
concurrency control or atomicity control. 

Paradigm for bypass of transaction failures - Transaction (process) failures can be 
classified into (i) expected, (ii) unexpected but manageable, and (iii) unexpected 
and unmanageable (Gray 1978). 

(i) Forward bypass of expected transaction failures - Bypass in case of expected 
transaction failures takes on a form of exception handling (Randell et al 1978; 
Yemini 1982). A transaction can contain statements which cause particular 
exceptions - such as arithmetic overflow, end of tape, array bound checks - to 
“hold”, and statements indicating what is to be done when each of these exceptions 
occurs. Exceptions can be organized into hierarchies (Gray 1978), so that if a lower 
level of the hierarchy fails to handle a failure, it is passed to a higher levei of the 
hierarchy. 

(ii) Backward bypass of unexpected but manageable transaction failures - A method 
based on the principle of retry can be used to bypass unexpected transient faults. 
Within a transaction a number of save points (Gray et al 1981) (called also backup 

points (Davies 1978) is specified. A save point stores information necessary for 
transaction restart from this point. In case of a transaction failure, restart from its 
last save point is performed. 

A more general adaptation method for unexpected transaction failures relies on 
implementing transactions as recovery blocks. Each recovery block (Randell 1975) 
comprises a check, called an acceptance test, and a collection of alternative 
procedures, called alternates. The procedures are functionally identical 
but independently implemented; for instance, they can use different algorithms or 
merely be written by different programmers. However, in some cases the primary 
procedure could realize a given function exactly, while each alternate could 
produce only approximate, but still acceptable results. 
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On an entry to a recovery block the primary alternate is tried. If it succeeds, that 
is, passes the acceptance test, a normal block exit follows. If it fails, all variables are 
restored to their values as of entry to the recovery block, then the second alternate 
is tried etc. In general, an acceptance test has a limited ability to detect errors, so it 
is possible that erroneous results pass the test. 

Modification of the recovery block concept for real-time adds to it a watchdog 

timer that monitors availability of an output within a specified time interval (Hecht 
1976). A further modification leads to the construction of the deadline mechanism 

(Wei & Campbell 1980). 
If a transaction implemented as a recovery block uses values updated by 

uncommitted transactions, an adaptation mechanism for interacting recovery 
blocks (“conversation”) has to be used (Randell 1975; Kim 1982; Shin & Lee 1984) 
to prevent cascading aborts (“domino effect”) when abort of a given transaction 
causes aborts of all transactions that used its results. 

Save points and recovery blocks are mechanisms internal to a transaction. Other 
adaptation techniques for unexpected failures could involve mechanisms external 
to transactions. An example is the majority voting scheme (N-version programming, 
Avizienis & Kelly 1984), selecting a consistent output produced by a majority of 
concurrently run transactions, while ignoring an inconsistent minority. 

(iii) Bypass of a priori suspected transactions - A transaction can be suspected as faulty 
by a past history of its executions. A recently modified or added transaction is more 
likely to be faulty than an “old” one. If the suspicion is sufficiently strong, the 
transaction should be eliminated from the system. 

4.1b The criterion of atomicity: Commitment, undoing, and redoing - Even with 
the assumption that a system is failure-free, transaction atomicity must be 
controlled. For example, when a transaction might be aborted (even if it is correct) 
for a reason such as deadlock resolution, its atomicity must be controlled. 

Each transaction consists of a number of actions some of which can be cancelled 
(iundone) without difficulty. The first action of a transaction which cannot be easily 
cancelled is called a commit action. A transaction can be easily stopped and aborted 
at any time before but not after its commitment (Gray 1980). 

Actions that can be easily cancelled are called undoable (Gray 1980). Once the 
consequences of an action have filtered to the environment, the action might be 
difficult or impossible to undo (Randell 1978) and, at best, can be compensated. 
For example, a compensation for an erroneous payment may require legal action. 
For implementing undoability of transactions a log [also called journal (Rosenk- 
rantz 1978) or audit trail (Chandy 1975)] of important system events is kept. 
Specifically, ail system updates are recorded on the undo log (Gray 1980) - for 
example as a pair: old value/new value for each updated entity. Now, an 
uncommitted transaction can be undone by setting entities to their old values. 

All actions following transaction commitment must be durable (redoable): once a 
transaction commits, all its effects must persist even in the presence of crashes. If 
lost due to a crash, committed transactions can be redone (Gray 1980; Gray et al 
1981) using new values recorded on the REDO log (which is a part of the system 

log)- 
Commitment is an impediment to transaction abort. A widely used solution is 

deferring the commit action of a transaction (cf. Davies 1978, Gray 1978). One 
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popular implementation of commit deferment uses a private working space for each 
updating transaction. All updated data are kept in this space during transaction 
execution. At the end of the transaction all updates kept in the working space are 
either made visible in the database (commitment) or backed out (abort). Backing 
out is done simply by erasing the working space (Munz 1980). 

Commit protocols: Protocols used for commitment of a transaction are called 
commit protocols. There are protocols which give participating sites of a distributed 
system autonomy; that is, allow participating hosts to abandon a transaction at any 
time up to the moment when the host starts to participate in the making of the 
abort-or-comrnit decision. The best known and simplest representative of these 
protocols is the two-phase commit (2PC) protocol (Lampson & Sturgis 1976; Skeen 
and Stonebraker 1983): During phase 1 all hosts are queried whether they can 
commit a transaction. All hosts agreeing to commit are equally prepared either to 
commit or to abort the transaction. All disagreeing hosts send abort messages. 
Using these votes, a decision to commit or to abort the transaction is reached. 
There are different versions of the protocol depending on how this decision is 
made. In phase 2 the decision is communicated to all other hosts, which uniformly 
abort or commit the transaction. 

The 2PC protocol is a paradigm and in its pure form can be used only in systems 
without host crashes or partitionings. For example, the 2PC protocol can be blocked 
and thus prevented from termination in the case when not all hosts of a system are 
operational. This happens because the protocol requires the answers of all hosts to 
terminate. A three-phase commit (3pc) protocol assures nonblocking of the 
commitment process in case of host crashes (Skeen 1981). There exist even more 
robust commit protocols (Dolev & Strong 1982) based on the Byzantine Agreement 

(that is, based on the solution to the Byzantine Generals Problem, Lamport et a'l 

1982). 

4.1c The criteria of transaction-consistency and mutual consistency: Concurrency 

control - The goal of concurrency control is ensuring a correct concurrent 
execution of transactions, that is, such execution as maintains transaction- 
consistency for each data item and mutual consistency among multiple physical 
copies of the same logical data item. The common operational criterion for 
ensuring transaction-consistency is serializability. However, weaker operational 
criteria, allowing for a higher degree of concurrency, can be used to improve 
system performance (Garcia-Moiina 1983; Lynch 1983). The most promising of 
these approaches use semantic information. 

Concurrency control in a fault-tolerant system must allow for both adaptation to 
host crashes and adaptation to network partitionings (when subsets of system sites 
cannot communicate with each other). Both these issues are discussed below. 

Adaptation of concurrency control to host crashes - There are a number of 
strategies for adaptation of concurrency control to host crashes. In the simplest 
strategy the possibility of host crashes is ignored; if such a crash occurs, it causes 
host crash catastrophe - which destroys database consistency. On the other 
extreme, a strategy may allow continuation of updates without restrictions; in this case 
the database system should be able to restore transaction-consistency and mutual 
consistency or the concurrency control algorithm itself should be inherently robust 
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(e.g., majority consensus algorithm, Thomas 1979, works correctly as long as a 
majority of hosts are operational). 

Adaptation of concurrency control to partitionings - The protocols for this 
adaptation are, in general, more difficult and expensive than protocols for 
adaptation to host crashes (since a crashed site stops working and therefore cannot 
violate mutual consistency). After partitioning splits the system, each partition can 
be kept internally consistent by using the regular concurrency control techniques. 
However, as the following example illustrates, internal consistency does not imply 
mutual consistency (that is, transactions allowed in separate partitions can be 
incorrect in the context of a fully connected system) (Alsberg & Day 1976). 

Example. In a fully connected naive automated banking system nobody can 
overdraw an account. Suppose that the system is split into two partitions and each 
partition allows withdrawal of no more than the full account balance. As a result, 
double the amount of the balance can be withdrawn by withdrawing the full balance 
in both partitions, u 

For a majority of applications, operation in a partitioned state consists of 
providing a very degraded service. The service in this case depends heavily on the 
application semantics as well as the frequency and duration of partitionings and can 
easily span the entire spectrum from doing nothing - which is a complete 
degradation - to only slightly impaired operation (Alsberg & Day 1976). 

Protocols for adaptation of concurrency control to partitionings must be 
complemented by recovery protocols. The selection of a given adaptation strategy 
for concurrency control depends on the ability of its complementary recovery 
protocol to reach a consistent state once partitions are reconnected. (Recovery to a 
consistent database state after reconnection - that is the resumption of com¬ 
munication among partitions - is discussed in §5.lb.) 

Extending the classifications available in the literature (Shipman 1979; Davidson 
1984), we classify (Bhargava & Lilien 1987) the adaptation protocols as shown in 
figure 4. We will discuss here only two example classes. 

A. Partitioning avoidance. 
B. Update avoidance. 

B.l. Update prohibition. 
B. 2. Update retraction. 

C. Update permissiveness. 
C. l. Update conflict prevention. 

C.1.1. Permit updates if only one partition exists. 
C.l.2. Permit updates in one partition only. 
C.l.3. Permit updates of different entities in more than one partition. 
C.l.4. Permit updates of some entities in more than one partition. 

C.2. Update conflict reconciliation. 
C.2.1. Limited conflict reconciliation. 
C.2.2. Unlimited conflict reconciliation. 

D. Hybrid solutions. 

Figure 4. A classification of protocols for adaptation of concurrency control to 
partitionings. 
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(i) Adaptation protocol that preserves mutual consistency but still permits updates of 

some entities in more than one partition - In this case, adaptation requires 
knowledge of semantics of both the transaction set and of the database, that is, 
solutions are application-dependent, and hence difficult to generalize. The 
following example illustrates this case (Shipman 1979). 

Example. The copies of seat assignment information are kept at several sites within 
a ten-site airline reservation system. Suppose, that the system is partitioned into 
seven-site and three-site partitions when X seats are still available. The protocol 
could state that the larger partition is allowed to allocate up to 7/10 * X seats on 
any flight, while the smaller partition is allowed to allocate up to 3/10* X seats. For 
a requirement stated simply as “No flight is overbooked” the mutual consistency is 
preserved. H 

(ii) Adaptation protocols based on the update conflict reconciliation approach - In this 
case some conflicting updates (that is, updates which may violate mutual 
consistency among sites in different partitions) are allowed in a partitioned system. 
We have identified two methods of conflict reconciliation: (a) a limited conflict 
reconciliation, (b) an unlimited conflict reconciliation. 

(a) Eimited conflict reconciliation - In this case the basis for the discussion is the 
paradigm of mutually reconcilable transactions. We distinguish an application- 
dependent subset of transactions - called a reconcilable transaction subset (.RTS) - 
such that all transactions from the subset can be processed in the partitioned system 
with the guarantee that the merge of the partitions incurs constant costs, 
independently of the number of reconcilable transactions executed in a partitioned 
system. Let us consider an example. 

Example. We assume a two-site database system, with a single logical entity Xfully 
replicated (XI at site 1 and X2 at site 2). Suppose, that all transactions update 
entities irrespective of their old values by a constant, and that a partitioning occurs 
at instant tp when XI(tp) — X2(tp) = 125. Suppose further that in a partitioned 
system transactions arrive at both sites: Site 1 processes four transactions which add 
10, add 80, subtract 15, and add 25 respectively; site 2 processes five transactions 
which subtract 10, add 25, add 15, add 30, and subtract 10, respectively. At the 
instant tr when partitions are reconnected Xl(tr) = 125 + 10 + 80— 15 + 25 = 225 
and X2(tr) = 125 — 10 + 25 + 15 + 30— 10 = 175. To find a mutually consistent 
database state of the reconnected system, the following application-dependent 
“reconciliation formula” is used: 

X = Xl(tr) + [X2(tr) - X2(tp)} = 225 + (175 -125) = 275. 

This value of X is given to both physical copies of X. 0 
The example shows the semantically simplest case: transactions perform “blind” 

additions and subtractions, updating old values by a constant. As a consequence, 
the reconciliation formula is simple. But the example illustrates the basic idea well. 

The choice of the reconcilable transaction subset has obviously an effect on 
system performance measures such as throughput, response time etc. Hence, the 
set could be optimized with the goal of improving some of these measures. 
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(b) Unlimited update conflict reconciliation - The adaptation protocols based on 
this approach are the most general and optimistic protocols for adaptation of 
concurrency control to partitionings (Alsberg & Day 1976). The approach allows 
execution of all transactions in all partitions. Of course, some transactions are 
blocked if data they need is not in the partition in which they run. Optimistic 
protocols maintain the highest possible operational power during partitioning. The 
costs of eliminating inconsistencies are paid during recovery from the partitioning 
(Davidson 1984). 

This approach is more useful if fewer conflicts occur. If only syntactic 
information is used, in the worst case all transactions executed in all but one 
partition have to be backed out and then reexecuted (or redone) after system 
reconnection. In the best case, it is possible that for a relatively large database and 
a relatively short-lived partitioning no conflicts whatsoever occur or conflicts are 
only “syntactic” and are easily resolved by using semantic properties of transactions 
and of the database. 

For a fixed transaction set, the decision to allow optimistic approach may be 
based on the analysis of the transaction and database semantics and the frequency 
of conflicts. For an arbitrary transaction set such optimism is completely blind. 

4.2 Application-specific fault-tolerant solutions 

In this subsection we discuss a few database applications that have semantic 
features useful for the application-specific solutions for increasing system fault- 
tolerance. 

4.2a En route air traffic control: In en route air traffic control, every site controls 
an area of the airspace, with some overlap between neighbouring sites, in which 
controlled planes are handed over from one to the other area. This domain- 
dependent property shows that the sites are strongly autonomous. As a 
consequence, only communication between sites controlling geographically neigh¬ 
bouring airspace areas is critical. Furthermore, the primary function of each site, 
which is preventing collisions of the planes within its area, can be performed even if 
communication with neighbouring sites is lost. Both these properties allow 
significant reduction of problems associated with network partitioning, by using 
custom-made network partitioning protocols. Also adaptation to site crashes can be 
custom-made. If neighbouring sites can extend their area of control to cover the 
area of the failed site, a site crash can be very conveniently and easily masked. In 
case of heavy loads on a site or in case of system malfunctions (caused, e.g., by a 
failure of primary procedures within recovery blocks), the resulting processing 
delays may be compensated for by delaying entry of planes from the neighbouring 
airspace areas. 

4.2b Airline reservation system :An important integrity constraint in an airline 
reservation system is “Do not overbook the plane.” Of course, 100% utilization of 
seats on each flight is the ultimate goal of each airline. The reservation system can 
be easily prepared to handle network partitionings as follows. Suppose that the 
system has two sites only, in Chicago and in West Lafayette, and that the following 
agreement between the sites is in effect. If at the moment of partitioning a number 
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of seats are available on a flight, 65% of these seats are assigned to the Chicago site 
and the remaining ones to the West Lafayette site. Please note that partitioning is 
detected immediately if in a normal operation every seat reservation must be 
agreed upon with the other site, and therefore there is no danger of overbooking. 

If no partitioning strategy is worked out ahead of time, overbooking can occur. 
In that case, the inconsistencies are treated by compensation: some passengers are 
requested to take other flights (even with other carriers). In case there are no 
convenient flights, the volunteering passengers may agree to wait overnight in 
return for accommodation and allowances. 

4.2c Automatic banking: Banks provide automatic banking service to their 
customers, via a network of automatic banking machines under control of a 
database system managing checking and saving accounts. Suppose, there is a $200 
per day limit on the amount of withdrawal per checking account. In a normally 
operating system, it is impossible to exceed this limit. The situation changes in a 
partitioned system. The individual banking machines can communicate only with 
the machines in the same partition. Then, it is conceivable that a customer can 
withdraw $200 from one machine in each partition and hence exceed the daily 
limit. The trivial solution to this problem is to stop withdrawals in all but one 
partition as soon as a partitioning occurs. Of course the privileged partition must be 
identified before the moment of partitioning, for example, as the one that contains 
a popular location. This solution severely reduces availability of withdrawals; 
deposits can proceed in all partitions with no restrictions. 

A better solution might allow withdrawals in all partitions, and call for 
compensating actions in case a customer exceeds the daily limit. Compensation 
could be in a form of (a) automatic transfer of an appropriate amount from the 
saving account to the checking account of the customer, or (b) automatic 
deduction of penalty fees from the checking or the saving account of the customer. 
In extreme cases, such as an overdraft, compensation may require legal actions 
against the guilty customer. However, the benefits of assuming full system 
availability, even during system partitioning, may outweigh the risks. 

Partitionings or site crashes may also make obtaining the exact account balance 
information impossible. In this case a backup (for example, the archive log) can be 
used to give the customer an outdated balance of his account with an appropriate 
warning, such as: 

“The balance as of 8 a.m. this morning was $1563.86. 
More recent information temporarily unavailable.” 

4.2d Medical diagnosis: In medical databases storing patient records there is 
inherently a certain amount of redundancy. For example, heart size has an effect on 
the curvature of ribs, which in turn has an effect on the functioning of lungs. 
Whenever an enlarged heart is observed, the adverse effect of this condition on 
breathing should be expected. Such interrelationships between data values should 
be used to enforce data integrity. 

Some of these interdependencies may also be useful if some parts of the medical 
database become unavailable, due to failures such as site crashes or network 
partitionings. To use an earlier example, from the data indicating an enlarged heart 
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the system should be able to infer breathing problems and warn the doctor, even if 
the data on the patient’s breathing condition is temporarily unavailable. 

4.2e Strategic defence :A strategic defence system, such as the Stategic Defense 
Initiative (SDl), has to work in an extremely hostile environment. In addition to 
high reliability requirements for systems expected to work for long periods of time 
in challenging space conditions, multiple site crashes are to be expected due to not 
only natural causes but also due to enemy attacks. Therefore, this application 
requires very quick system reconfiguration (that is, changing system configuration 
to eliminate failed elements or to activate spares). Reconfiguration can be facili¬ 
tated by the requirements of high autonomy of sites and flexibility of the commu¬ 
nication system. 

Some application-dependent information can help in this case also. The system 
has to maintain a database of potential targets. Each site might have a local 
database with a subset of this global database. Ideally, all sites together must cover 
every target. The situation when a target is covered by many sites causes no 
problems as long as no target is overlooked. This means that full mutual 
consistency of the local databases is too strong a requirement and not only can but 
should be relaxed in order to improve system performance (by simplifying data 
synchronization actions). 

The weak criterion of mutual consistency of local databases, and the necessity to 
continue system operation with system sites being destroyed, introduce uncertainty 
and approximation as the normal modes of system operation. This creates both 
challenges and opportunities for the system designer, especially with respect to 
fault tolerance functions of the system. 

5. Verification and restoration of data consistency 

In the previous section we have discussed the means of maintaining database 
consistency via the use of fault-tolerant techniques and methods. Ideally, these 
mechanisms would be so perfect that no inconsistent data would ever be allowed 
into the database. Realistically, the effort to maintain consistency is only half the 
job of a database system, since some errors get into the database and cause 
inconsistency. The other half of the job is detecting these errors and restoring 
database consistency. 

This section concentrates on the issues of verification of database consistency (to 
detect the inconsistencies) and restoration of database consistency once its 
violation is detected. In §5.1 we consider only the crashes that are relatively easy to 
detect, since they produce many visible symptoms (these are “clean" failures; no 
crashes that can go undetected are considered). Therefore, the issue of detection is 
not discussed: as soon as a crash occurs it is detected, and proper measures are 
taken to restore the consistency of the possibly damaged database. For that case, 
we consider only restoration of database integrity. 

In §5.2 we consider damage to database consistency that is difficult to detect and 
may be detected after delay. The issue of verification of database consistency in 
order to detect so-called “hidden errors" that somehow found their way into the 
database is absolutely critical in this case. We might not be able to find out how 

these errors got into the database but we must at least have some way of detecting 
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(even if with considerable delay) the existence of these errors. It is a much tougher 
problem than restoration of database consistency once a proper error diagnosis has 
been made. Both verification and restoration of database consistency are discussed 
in this case. 

5.1 Restoration of data consistency after site crashes and network partitionings 

In this subsection we consider only recovery from site crashes and network 
partitionings. As mentioned, detection of these crashes is assumed to be 
straightforward. 

5.1a Recovery from host crashes’ The operation of a distributed system can 
continue even with some of its hosts crashed. Adaptive action (see §4) can 
eliminate unoperational hosts from the system. Performance will be degraded, and 
the degree of degradation will depend on the number of hosts in the system and on 
the ways data are replicated (Bhargava 1984). If any of the system functions uses a 
centralized control algorithm and if a crashed host acted as the central controller 
for this function, the database system is burdened with the election of a new central 
controller (Gardarin & Chu 1980; Garcia-Moiina 1982). 

For simplicity, usually it is assumed that the effects of a host crash are limited to a 
single site; this assumption is realized in practice through the use of commit 
protocols, which assures that local copies of the results of the committed 
transactions can be restored after a site crash. In such a situation, host recovery can 
be achieved without compensation of committed transactions at other sites, 
because transactions that are not committed can be easily aborted (compensation 

requires running transactions that make up for undesirable updates performed by 
committed transactions that must be rolled back). 

Host recovery from a crash typically includes (a) restoration of a transaction- 
consistent database state at the recovering site, and (b) performing on the local 
database the updates missed while the host was down (this step restores mutual 
consistency of the recovering site with the other sites). 

(a) Restoration of a consistent database state - Since we have assumed that the 
effects of a crash are limited to a single site, only local information available at the 
recovering host is used in the restoration of database consistency. The basic 
techniques for restoration of a consistent database state can be classified as follows 
(Bhargava & Lilien 1987): 
(i) log-only restoration, 
(ii) snapshot and log restoration, 
(iii) simple checkpoints and log restoration, 
(iv) time-stamped checkpoints and log restoration. 
The most efficient of these techniques is the time-stamped checkpoint and log 
restoration technique. Techniques using semantic information can be expected to 

be more efficient. 

(b) Updating database to current system-wide state - Updating a database to the 
current system-wide state can be based on obtaining lost information, such as 
update and synchronization data, from other hosts of a (partially) replicated 
database system (Champine 1979; Bhargava 1987). Sometimes a host under reinte¬ 
gration cannot - because of failures of other hosts - obtain information necessary 
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for the update. In this case it can allow only read operations on its database, with a 
warning that data might be obsolete (Munz 1980). Updates under these conditions 
could lead to inconsistencies; after other hosts recover, two different versions of the 
same data exist, violating mutual consistency. 

If the host crash did not last for a long time, the most efficient update procedure 
is to obtain lost updates from another host. Otherwise, the best approach is to 
acquire the entire database from a nearby site. The latter alternative is not viable if 
the database is very large compared to the spare communications bandwidth 
available (Champine 1979). An implementation for the former alternative is given 
in Attar et al (1984). The basic idea is that special copier transactions read data 
values at remote sites and write them into the database controlled by the recovering 
host. Copiers must be synchronized by the concurrency control protocol exactly 
like other transactions. Note that only those entities that were updated while the 
recovering host was unoperational need to be read by copiers. In Bhargava (1987), 
fail locks have been used to identify these entities. 

5.1b Recovery from network partitionings: As long as message re-routing (Alsberg 
& Day 1976; Morgan et al 1977) can guarantee communication between any pair of 
sites, communication line failures remain transparent. Re-routing can be done by 
the underlying network (in which case it is transparent to the database system) or, if 
the network is dumb, by the database system itself. A proper network topology aids 
this task. 

Repair of a partitioning ends with the resumption of communication among 
partitions, that is, reconnection. Mutual reintegration of reconnected partitions, 

called a merge, has as its goal the reconciliation of all mutual inconsistencies among 
reconnected partitions. Correct merge actions may depend on the topology of 
partitioning, and the semantics of the database and transactions that run during 
partitioning (Rothnie & Goodman 1977). 

Merge protocols and techniques for adaptation to a partitioning used by 
concurrency control protocols are interdependent. In general, the smaller the 
degradation in the operation of concurrency control in a partitioned system, the 
higher the complexity of the corresponding merge protocol used during system 
recovery. Merge protocols can be classified as shown in figure 5 (Bhargava & Lilien 
1987). In parentheses we specify for which category of concurrency control 
adaptation protocols a given merge protocol applies. Below we discuss briefly only 
the most interesting merge class. 

Merge by partition reconciliation - Since no reconciliation is necessary for entities 
that have preserved their mutual consistency, an efficient merge process requires 

A. “Empty" merge (for update prohibition protocols of cc). 
B. Merge by update retraction (for update retraction protocols). 
C. Merge by compensation of lost updates (for update conflict prevention 

protocols). 
D. Merge by partition reconciliation (for update conflict reconciliation 

protocols). 
E. Hybrid techniques (for hybrid solutions). 

Figure 5. A classification of merge protocols. 
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detecting these entities of different partitions that are (or, pessimistically, could be) 
mutually inconsistent. A detection method for the case when entities are files is 
given in Parker et al (1983). 

For the limited update conflict reconciliation approach, the technique using the 
reconcilable transaction subsets (see §4.1c) and reconciliation formulas or other 
semantic-dependent methods (see, e.g., Garcia-Molina 1983) can be used. 

For the unlimited update conflict reconciliation, reconfiguration control must be 
able to reconcile any detected update conflicts. If it is impossible to predict which 
transactions will have to be undone, each transaction executed while the system is 
partitioned must be either uncommitted or compensable (Davidson 1984; Bhargava 
& Lilien 1987). 

5.2 Restoration of data consistency after detection of hidden errors in the database 

In spite of all fault-tolerance measures, errors find their way into the database. The 
ultimate means of detection and elimination of these “hidden” errors from the 
database is the use of integrity verification and enforcement tools. This is the topic 
discussed in this section. 

5.2a Verification of data consistency: Integrity assertions and database integrity - 
Integrity verification fulfills a need for database validation as the means of main¬ 
taining data reliability at some required level (Florentin 1974). Database integrity is 
specified by a set of integrity assertions, which are, basically of the form: 

IF trigger THEN constraint ELSE violation action, 

where “constraint” is a predicate prohibiting some incorrect combinations of 
database values, and “trigger” specifies when the constraint should be evaluated. In 
case a triggered constraint evaluates to “FALSE,” a special “violation action” is 
performed by the system. 

We consider only semantic integrity assertions that deal with the actual values 
stored in the database and ignore structural constraints, such as functional 
dependencies, among attributes in the database. 

Mechanisms for database integrity validation - Mechanisms for validation of 
integrity of database-resident data, are primarily implemented by a semantic 
integrity subsystem (Eswaran & Chamberlin 1975; Stonebraker 1975; Lilien & 
Bhargava 1985). A semantic integrity subsystem could consist of five principal 
components (Hammer & McLeod 1975): 
(a) High-level nonprocedural languages to express a set of integrity assertions. 
(b) Processors for the nonprocedural languages, which translate high level integrity 
assertions into an internal form. 
(c) Integrity assertion enforcer (checker) to determine which integrity assertions 
need to be checked after one or more database changes occur and to perform that 

checking. 
(d) Violation-action processor, which takes appropriate action when an integrity 
assertion violation is detected by the enforcer. 
(e) Integrity assertion compatibility checker, which is responsible for ensuring that 
the current set of integrity assertions for a database is free from conflicts and other 

undesirable properties. 
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The integrity subsystem invokes execution of the appropriate constraint 
predicate whenever an event specified by a trigger condition takes place. A trigger 
may be activated: (a) before or after execution of a transaction, (b) after an 
occurrence of a specific database state, (c) after an occurrence of a specific 
transaction between states, (d) periodically, or (e) upon user or system demand 

(Hammer & McLeod 1975). 

Integrity assertion activation - An integrity assertion can be enforced after a 
primitive database change, after some logical group of changes, or upon user or 
system demand (Hammer & McLeod 1975). We can specify types of database 
access - such as insertion, modification, deletion - for which an assertion is to be 
invoked (Fernandez & Summers 1976) and classify the assertions as insertion rules, 
change rules, and deletion rules, respectively (Fong & Kimbleton 1980). 

A trigger subsystem (Eswaran et al 1976), used for implementation of integrity 
assertions, invokes execution of the body of a trigger (a program) whenever an 
event specified by a trigger condition takes place. A trigger may be activated: 
(a) before or after the execution of a statement expressed in a data sublanguage, or 
(b) after an occurrence of a specific database state, or (c) after an occurrence of a 
specific transition between states. 

For special types of databases - large design databases - the maintenance is 
delayed until strictly necessary and integrity violations are temporarily tolerated. 
Integrity assertions are pre-compiled procedures included in entity definitions and 
automatically activated by the system. Temporary existence of simultaneous 
alternative values for entities, which is important in systems for decision making, is 
allowed (Lafue 1979). 

Subsets of integrity assertions to be activated for a given database state can be 
specified by the condition of applicability given in the definition of each assertion. 

Costs of integrity enforcement - Note that the cost of verification of a single 
integrity assertion is high, comparable to the cost of running a single retrieval 
query. Therefore, although the importance of semantic integrity control in 
database systems is well-known, only limited forms of integrity verification, 
involving only simplest forms of integrity assertions, have been incorporated into 
existing database systems. The costs of achieving a high degree of database 
consistency may be prohibitive (Fong & Kimbleton 1980). Hence efficiency/ 
effectiveness compromise is critical. Numerous query optimization techniques (see, 
e.g., Jarke & Koch 1984, Yu & Chang 1984) can be applied to integrity verification. 
Additionally, other improvements discussed below are available. 

Specifically for the verification of transaction writeset, the approach called query 
modification is applicable. Query modification requires that each interaction with 
the database is immediately modified by appending to it integrity assertions (at the 
query language level) to one guaranteed to have no database integrity violations. It 
is argued that appending integrity assertions at this high level increases update 
efficiency and allows for enforcing complex integrity checking that is difficult to 
enforce at lower levels. The scheme also allows the user to demand the 
enforcement of integrity assertions (using the retrieve command), instead of 
checking them at each update. 

For many updates only partial evaluation of integrity assertions is necessary. For 
example, an integrity assertion verifying that maximum allowed plane altitude is 
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not exceeded cannot change its value from TRUE to FALSE if the plane is 
descending. Lengthy recomputation of assertions should not be required to 
determine that the update could not violate database integrity. There is a method 
(Buneman & Clemons 1979) - working not only for trivial cases as the one 
described - that reduces the work necessary for determining that an update could 
not falsify an integrity assertion. For a certain class of updates, no database 
accesses are necessary to determine that an integrity assertion could not change its 
value. For other classes of updates, a partial evaluation of assertions is required to 
determine this fact. 

Statistical methods for integrity analysis (Svanks 1981) drastically reduce 
verification costs at the price of lower effectiveness of error detection. These 
methods can be used (a) for estimating the reliability of data if the exact 
verification of database contents is not required, or (b) between regular, exact 
verifications of database contents. 

Another efficient strategy for integrity verification - ordered batch verification 

(Lilien & Bhargava 1984) - is particularly attractive for delayed integrity assertions 
when integrity assertions are verified in batches. Proposed heuristics define a 
proper order of verification of the integrity assertions that result in a substantial 
decrease of the I/O costs as compared to an arbitrary order of verification. More 
details of this method are given in §6. 

Specialized hardware allows for further efficiency improvements. For example, 
in a cellular-logic device with an array of cells, each containing rotating memory 
and a special-purpose processor, verification can be performed independently of 
the host at the place where data are stored (Hong & Su 1981). 

Input data integrity - Input errors are a special case of data errors since system data 

input is just a transmission of data from the environment to the system. Protection 
against input errors is a distinctly different issue since the input steps over the 
barrier between the system and its environment. In such a case, it is no longer 
adequate to consider only the system factors; the environmental ones should also 
be investigated. In particular, those factors that define kinds and frequency of the 
probable input errors require special attention. Prevention of certain erroneous 
inputs in the environment may be more efficient than their detection by input 
checking. 

5.2b Restoration of data consistency. The goal of database recovery, that is, 
recovery from errors found in the database, is to restore the semantic integrity of the 
database with the minimal loss of work already performed by the system. As shown 
in §3, recreating a consistent (“integral”) database state “closest” to a given 
inconsistent (“nonintegral”) database state, if based on syntactic information only, 
is practically infeasible. This explains why the syntactic solutions proposed in the 
literature use the simpler paradigm of backward recovery that relies on the 
restoration of a pre-recorded integral database state. 

Integrity control must block access to erroneous database entities; it may also be 
able to make some data errors transparent. For example, for transactions accepting 
highly correlated numerical data as input, detection of a data error can be followed 
by the generation of estimated data to replace the wrong or unexpected data (cf. 

Yee & Su 1978). 
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Database recovery attempts to remove database errors that were caused by faults 
undetected by all other mechanisms within the database system. Attempts to locate 
the original undiagnosable faults could be futile; in such a case we must treat the 
database itself as the source of errors. The aim is to repair the database 

automatically, by restoring its integrity. 
Database recovery may require removing the effects of committed transactions. 

The only way of cancelling the effects of a committed transaction is compensation - a 
new transaction is run to offset these effects (Gray et al 1981). Compensation of a 
transaction is possible if reverse operation for each of its actions exists (cf. Archer 
et al 1984). Many real life actions seem naturally to come in pairs with reverse 
actions, e.g., deposits and withdrawals, credits and debits, issues and receipts, 
which makes compensation of these actions easy. But in many other real-time 
systems, such as nuclear power plant control, monitoring intensive-care patients etc., 
there are also actions which are difficult to compensate or - even worse - are 
irreversible (Hebalkar 1978; Leveson & Harvey 1983). 

A classification of database repair procedures is shown in figure 6 (Bhargava & 
Lilien 1987). Here we briefly discuss only two of them. 

(i) Database repair after limited and diagnosable errors - If error propagation is 
limited and can be traced, a method called database patching here, can be used. 
Database patching (Davies 1978) (cf. backtracking algorithm in Wiederhold 1977) 
consists of three steps following detection of an error. First, the original erroneous 
data are diagnosed and corrected and the transaction that has written these data is. 
determined. Next, the extent of the exposure resulting from the original error is 
determined. Third, for each transaction that had a different input, it must be 
decided whether the difference affected the outcome of that transaction. If so, then 
it must be decided whether to undo the old transaction and rerun it to generate 
differences, or to compensate by means of another transaction. The results of the 
third step are examined to see which output data would have been different. The 
second and third steps are repeated until no more transactions are affected. 

(ii) Database repair after an extensive damage or undiagnosable errors - Database 
patching is possible only if erroneous data can be identified and requires that 
database update history be recorded by the system (on the log) in sufficient detail. 
Also, if errors propagate widely throughout the database before they can be 
detected, database patching is impossible, and local database repair (involving onl> 
the crashed site) or global database repair (involving other sites also) must be 
performed. 

If errors are confined to a single site, then local database repair is done in a way 
identical to recovery from a host crash (see §5.la). If errors have propagated over 
two or more sites, or when local restoration of an integral state at a site does not 
guarantee mutual consistency of all database sites, local repair is impossible. In thi 

A. Database repair after limited and diagnosable errors. 
B. Database repair after an extensive damage or undiagnosable errors. 

B.l. Local database repair. 
B.2. Global database repair. 

Figure 6. A classification of database repair procedures. 
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case, the mutual consistency of all sites can be ensured only by restoring 
synchronized checkpoints of “correct” local states. This solution is much more 
expensive (Bhargava & Lilien 1987). 

6. Batch verification of integrity assertions 

As mentioned in §5.2a, the cost of verification of database integrity 
(particularly its long duration) is a critical factor in achieving a high degree of data 
correctness in a database. The most promising approaches to verification of 
integrity assertions are, in our opinion, the ones that try to make use of different 
forms of parallelism in this verification. 

We see at least three forms of parallelism useful for integrity verification: 
(i) batch integrity verification: trying to utilize the fact that verification of two or 
more different integrity assertions may require access to the same subset of 
database pages; 
(ii) inter-assertion parallelism: using parallel processing (a multiprocessor or a 
distributed system) to verify different assertions in parallel, 
(iii) intra-assertion parallelism: using parallel processing to verify different parts of 
the same or different integrity assertions in parallel. 

Each of these approaches can further benefit from a specialized hardware such as 
custom-made VLSI chips (see analogous solutions for relational database opera¬ 
tions, Kung & Lehman 1980, Lehman 1982). In this section we present the batch 
integrity verification problem and review proposed solutions to this problem. 

6.1 Optimal batch lA verification problem 

Optimization of the IA verification process can be achieved through proper 
scheduling of the integrity assertions (ia) (for details see Lilien & Bhargava 1984). 
We use the fact that at least some of the IA can be verified with a delay. After a 
database is updated by a number of transactions, all the “delayed” IA are verified. 
For the evaluation of an assertion a number of database pages need to be 
transferred from the secondary storage to the fast memory. Since certain pages may 
be required for evaluation of different integrity assertions, the order of the 
evaluation of the integrity assertions determines the total number of pages fetched 
from the secondary storage. Hence, the schedule for the evaluation determines the 
costs of the database verification process (measured in terms of the number of page 
fetches). Finding a minimum-cost schedule for the verification of a batch of IA is an 
optimization problem, called the optimal batch IA verification (OBIAV) problem. 

Example. Integrity assertions IA1? IA2, and IA3 are to be verified. IA! needs pages 1, 
5, 7, IA2 needs pages 2, 4, 8, and ia3 needs pages 1,3,5 (see figure 7). Assume that 
the memory buffer can hold three pages and assume that initially none of the 
needed pages is in the buffer. If the ia are verified in the order IAi-ia2-ia3, 

3 + 3 + 3 = 9 pages have to be transferred to the memory from the secondary 
storage. If the IA are checked in the order iArlA3-lA2, only 3+1 + 3 = 7 page 
transfers are required (lA3 uses pages 1 and 5 already in the buffer after the 
verification of IA!). ■ 
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pages required for verification 

IAy.1,5,7 IA2: 2,4,8 IA3:1,3, 5 

natural order (1-2-3) an optimal order (1 -3~2) 

101 102 103 

1 5 7 

2 4 8 

1 3 5 

c = o 

C= 3 

C = 6 

Cs 9 

101 102 103 

1 5 7 

+1 + 5 3 

2 4 8 

c = o 

C= 3 

0 4 

0 7 

C-cumulative verification cost 
Figure 7. An illustration of the optimal batch IA verification ((OBIAV) problem. 

Determining a schedule for an IA verification cannot be performed a priori. A 
verification process involves only a subset (defined at the run-time) of the whole set 
of IA defined on the database. The optimal subset order is, in general, different 
from the subset order derived by the projection of the optimal set order (cf. Lilien 
& Bhargava). We call this property a dynamic character of the optimal batch IA 

verification. 

6.2 Identification of integrity assertions and pages required for the I A verification 

process 

Before the optimal batch IA verification (obiav) problem can be solved, we need 
to know: 
(a) the batch of the IA to be verified; 

(b) the set of pages required for the verification of every IA of the batch. 
The subset of the IA to be verified by an IA Verifier is determined by the updates 
made since the previous database verification. The verification of an IA involves, in 
general, not only the updated pages but also the semantically interdependent (via 
IA) pages. 

Example’. Suppose that the following set of integrity assertions is defined on a 
database (figure 8): 

IAS = {IA,,IA2} 

IA] = “employee’s salary < his manager’s salary” . 
ia2 = “employee’s age > 16” 

and the only updates performed since the previous database verification raise an 

employee’s salary. Then, the database must be verified by the assertion ia1? but 

there is no need to check IA2. 

Suppose that Adams’s record is on page X (figure 8). If Adams’s salary was raised, 
not only page X (with Adams’s salary) but also page Y (with Smith’s salary) must 
be fetched from the secondary storage to verify the assertion lAt. H 



75 Enforcement of data consistency in database systems 

salary < his manager's salary" 

mployee's age>16 " 

Figure 8. An example for identification of IA and pages required for IA verification. 

employee salary manager 
Smith 20,000 Jones 

page Y 

IA, =Memployee's 

I A? =“e 

employee salary manager 

Adams 15,000 Smith 

page X 

The algorithm for identification of the IA and the pages required for the IA 

verification is given and discussed in Lilien & Bhargava (1984). 

6.3 Approximate solutions to the OBIAV problem 

Once the batch of IA to be verified and pages required for the verification of every 
IA of the batch are identified, the optimal batch IA verification (OBIAV) problem is 
defined. We have shown (Lilien & Bhargava 1984) that this problem is NP-hard. As 
a consequence, no practical optimization algorithm exists for the OBIAV problem, 
and we look for the approximation algorithms. After the selection/definition of the 
approximation algorithms, we analyse their worst case behaviour theoretically and 
their average behaviour experimentally. 

6.3a Approximation algorithms: Recall that the OBIAV problem has a dynamic 
character. As a consequence, the ordering of the IA cannot be done a priori and has 
to be done in the real time. Hence, very fast approximation algorithms are needed. 

In Lilien & Bhargava (1984) four approximation algorithms are compared with 
the RANDOM ORDER algorithm, representing a naive approach to the IA 

verification and used as a benchmark for the comparison. The algorithms searching 
for the approximate solutions are: NEAREST NEIGHBOR, NEAREST INSERTION, 

FARTHEST INSERTION, and MAXIMAL UTILIZATION. 

Let us consider the general principles of operation of these algorithms. RANDOM 

ORDER, NEAREST NEIGHBOR, and MAXIMAL UTILIZATION are the path-building 

algorithms. At each step one more IA is selected, and added tc the end of the path 
constructed so far (figure 9). NEAREST INSERTION, and FARTHEST INSERTION are 
the cycle-building algorithms. At each step one more IA is selected, and inserted at 
a minimal cost into the cycle constructed so far. For example, in figure 10, lAm is 
selected and inserted between IA, and IA* (i.e., the arc lA;-> IA* is replaced by the 
sequence of arcs lA;-»lAm and IAW--»IA*). 
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step 0: initial buffer state 

step V 

• • • « 

step 2 (T)— 
Figure 9. The principle of opera¬ 

tion for the path-building sched¬ 

uling algorithms. 

6.3b Worst case behaviours of the approximation algorithms: In the study of the 
worst case behaviours of the approximation algorithms we have analysed the 
theoretical worst case performance of NEAREST NEIGHBOR, NEAREST INSERTION, 

FARTHEST INSERTION, and MAXIMAL utilization (Lilien & Bhargava 1985) and 
have shown that for a given n-node hibiav digraph none of these approximation 
algorithms can produce a Hamiltonian circuit more than n-1 times worse than an 
optimal Hamiltonian circuit. 

6.3c Experimental comparison of the average behaviours of the approximation 

algorithms: The experimental average behaviours of the approximation algor¬ 
ithms were analysed by simulation (Lilien & Bhargava 1984). We present the 
assumptions and results of the analysis below. 

Assumptions for the analysis - The following assumptions were used: 
(Al) The memory buffer size is limited. 
(A2) At most a single secondary storage access (a page fetch) is required to bring 
any database entity to the fast memory. 
(A3) The number of pages needed for the verification of a single integrity assertion 
does not exceed the capacity of the memory buffer reserved for the verification. 
(A4) An IA being added to the path may require accessing a page not available in 
the buffer. If the buffer is full, a path-building scheduling algorithm must remove a 
page from the buffer to make room for the required page. It removes the page 

step 0: - initial buffer state 

Figure 10. The principle of operation for 

the cycle-building scheduling algorithms. 
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which (1) is not used by this IA, and (2) is least often used by the IA still to be 
added to the path. 

(A5) Transactions processed at the instant when an IA verification starts are 
interrupted (they are resumed after the IA verification is successfully completed). 
(A6) The costs for a scheduling algorithm for a given IA verification are measured 
in terms of the number of page fetches required for this verification. 
(A7) During computation of the costs for an IA verification schedule, an IA under 
evaluation may require accessing a page not available in the buffer. If the buffer is 
full, a page must be removed from the buffer to make room for the required page. 
We remove the page which (1) is not used by the IA under evaluation, and (2) is 
least often used by the IA still to be evaluated. 

Results of the average behaviour comparison - Three simulation experiments were 
carried out to study the relative costs of the approximation algorithms as a function 
of the size of the database, the size (the cardinal number) of the set of integrity 
assertions, and the size of the memory buffer (Lilien & Bhargava 1984). 

The intuitive notions defined informally below are useful in the discussion of the 
simulation results. The semantic complexity of a database is directly proportional to 
the number of integrity assertions defined on the database and inversely propor¬ 
tional to the size of the database. The density of a batch of IA is directly propor¬ 
tional to the number of integrity assertions in the batch to be verified and inversely 
proportional to the size of the buffer used for the verification. 

We have found that (at least within the range of parameter values used in the 
simulation) the average relative costs of the non-random approximation algorithms 
decrease when the semantic complexity of the database increases. Similarly, we 
have found that (at least within the range of parameter values used in the 
simulation) the average relative costs of the non-random approximation algorithms 
decrease when the density of the batch of IA increases. (We assume here that the 
number of the assertions checked during each IA verification is directly proportion¬ 
al to the number of the assertions defined on the database.) 

High semantic complexity of the database and high density of the batch of IA are 
precisely the cases in which optimization of the IA verification is critical. In other 
words, the simulation strongly suggests that the average behaviours of the 
non-random approximation algorithms are better in the environments in which the 
cost savings are more critical. 

7. Conclusions 

There would be no need for the data integrity control if ideal input integrity 
control, concurrency control, and transaction atomicity control could be im¬ 
plemented, together with a faultless transaction set. However, only a part of system 
input errors are detected by input data control before they penetrate the system. 
Similarly, faults in transactions happen and only some of them are detected by the 
transaction correctness control. The remaining, unrecognized faulty transactions 
can update the database or compromise the concurrency control and the 
transaction atomicity control, which results in database contamination (Edelberg 

1974; Bellon & Saucier 1982). 
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Detection of an error or fault by input data control or by transaction correctness 
control is an immediate detection; assuming that only verified system input and 
transaction output data are made visible to other transactions, such a detection 
prevents the contamination of the database. However contamination occurs in 
reality - erroneous data pass input data control and transaction correctness control 
checks and find their way into the database, where they remain undetected for a 

time. Detection of such hidden errors (called also latent errors, Shin & Lee 1984) 
constitutes delayed detection and is the domain of the data integrity control. 

Hidden errors have a tendency to propagate causing data deterioration (Adiba et 

al 1978; Schlageter & Dadam 1980). For example, erroneous input to a transaction 
gives an avalanche of incorrect output data. It is the role of the data integrity 
control to reduce error propagation to manageable proportions by error confine¬ 
ment (Denning 1976) and to detect errors before database deterioration exceeds 
the critical point of no return. 

The above discussion fully justifies calling integrity control a last resort in the 
effort to maintain database consistency. Unfortunately, in practice, the integrity 
control is performed, at best, in a rudimentary way and without automatization to 
the desirable degree, comparable to the degree of automatization of concurrency 
control or transaction commitment mechanisms. For example, out of 14 systems 
investigated in Schmidt & Brodie (1983), only two (Ingres and Query-by-Example) 
have some form of integrity mechanism. 

We believe that the major reasons for this neglect of integrity enforcement are as 
follows. First, a psychological factor plays an important role. Since errors are 
statistically rare, there is a strong temptation not to verify integrity at all necessary 
times. The attitude does not take into account longevity of databases (error 
accumulation over time!) and inability (yet) of database systems to tolerate 
incomplete/faulty data. Second, verification of a single assertion can be as 
expensive as execution of a single query. With significant number of assertions 
required for adequate data integrity control, a naive approach may make the costs 
of integrity verifications prohibitively high. Third, there is a lack of general 
integrity enforcement mechanisms: it is unclear how to restore database integrity if 
a violation is .detected with a delay. This problem is also related to the issue of error 
confinement in databases. 

Although some important results of investigations on reduction of costs of 
integrity enforcement are available in the literature, there is much to be done in this 
area. For some time, all the gains in efficiency of integrity verification are likely to 
be consumed by increased precision and power of the augmented set of integrity 
assertions. This is clear evidence of the need for further research effort in this 
direction. In most applications, it is desirable to limit the cost of verifying integrity 
assertions to about 15% of the cost of normal processing. Research is needed to 
decrease such costs. We may have to look into hardware solutions rather than 
purely software ones to achieve this goal. 

Even though the research on efficient integrity enforcement as presented here 
benefits database consistency, it could bring an important side benefit: Integrity 
assertions can be used as an alternative method to enrich database semantics. 
Instead of specifying a new data model for each application or for each group of 
similar applications, database semantics can be enriched by definition of a set of 
explicit integrity assertions (cf. Fernandez & Summers 1976). 
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Other applications of this research could be found in software validation and 
verification, where acceptance tests, acceptance checks, and integrity assertions 
would play the role of the dynamic analysis techniques (Adrion et al 1982). 
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Abstract. This paper is aimed at reviewing the notion of Byzantine- 
resilient distributed computing systems, the relevant protocols and their 
possible applications as reported in the literature. The three agreement 
problems, namely, the consensus problem, the interactive consistency 
problem, and the generals problem have been discussed. Various 
agreement protocols for the Byzantine generals problem have been 
summarized in terms of their performance and level of fault-tolerance. 
The three classes of Byzantine agreement protocols discussed are 
the deterministic, randomized, and approximate agreement protocols. 
Finally, application of the Byzantine agreement protocols to clock 
synchronization is highlighted. 

Keywords. Byzantine generals problem; agreement protocols; distri¬ 
buted computing; fault-tolerance. 

1. Introduction 

Very high reliability and uninterrupted operation of the computing system are vital 
in certain applications like on-board spacecraft systems and nuclear power plants. 
Malfunction of such critical systems causes severe penalties. This calls for the 
desigii of highly reliable and available computing systems. There are two 
approaches for achieving higher reliability, namely fault-avoidance and fault- 
tolerance. Fault-avoidance results from conservative design principles, such as, the 
use of high-reliability components, component burn-in, and careful signal-path 
routing with the goal of reducing the possibility of a failure. The fault-tolerance 
approach, on the other hand, accepts the inevitability of failures and overcomes the 
effects of defects through functional redundancy, thereby achieving a higher 
reliability than that is achievable by fault-avoidance techniques. 

Fault-tolerance concepts have been extensively used during the past 15-20 years. 
The SIFT (software implemented fault-tolerance) computer is an example of a 
computer that is built using fault-tolerance concepts (Wensley et al 1978). The four 
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classes of faults studied in the literature are ‘fail-stop’, ‘omission faults’, ‘timing 
faults’ and ‘Byzantine faults’ (Cristian et al 1984; Ezhilchelvan & Shrivastava 1986). 
Because of the complexity of ‘Byzantine faults’, the Byzantine fault-tolerance 
concepts have gained the significant attention of researchers in the recent past. 
Developing techniques to tolerate ‘Byzantine faults’ in a distributed computing 
system (DCS) is gaining significance due to the inherent advantages of reliability, 
load balancing, high throughput, and modular expansion of such systems. This 
paper is an attempt at reviewing the work done in the area of ‘Byzantine-resilient 
distributed computing systems’. The rest of the paper is organized as follows. 
Section 2 presents some of the conceptual preliminaries required to study the 
Byzantine-resilient DCS. In §3, we discuss the three classes of agreement problems. 
Some of the deterministic, randomized and approximate Byzantine agreement 
protocols reported in the literature with their merits and demerits are highlighted in 
§4. A few typical examples found in the literature concerning the use of Byzantine 
agreement protocols are highlighted in §5. Section 6 concludes the paper. 

2. Conceptual preliminaries 

In this section, we present some of the conceptual preliminaries required to study 
Byzantine-resilient DCS. We classify the faults into four types (Cristian et al 1984; 
Strong 1985; Ezhilchelvan & Shrivastava 1986). The simplest kind of fault is the 
‘fail-stop’ type. In this type, a component (a processor or a link) may fail at any 
time, but once it fails, it immediately ceases to operate. A similar but more 
encompassing fault is the ‘omission fault’. In this case, the component may fail to 
provide some specified function but otherwise it continues to operate normally. 
Both these classes of faults cannot alter and/or introduce spurious messages. 
Another class of faults is the ‘timing faults’. In this case, a correct message or 
response comes from the faulty component earlier or later than the time specified 
for the arrival of the message. It may be noted that the ‘omission faults’ can be 
viewed as a special case of ‘late timing faults’ with an infinite delay. The ‘early 
timing faults’ and iate timing faults’ are also referred respectively as ‘race faults’ 
and ‘performance faults’ (Cristian et al 1984). Finally, the class of the most complex 
faults is the ‘Byzantine faults’ or the ‘arbitrary faults’. A ‘Byzantine fault’ is an 
instance of arbitrary behaviour on the part of a device, a processor, or a program. It 
can exhibit malicious behaviour. It can send messages when it is not supposed to, 
make conflicting claims with other processes, act dead for a while and then revive 
itself. 

A ‘process’ is an isolated agent of a DCS, having only a partial view of the global 
state of the DCS. The ‘processes’ involve themselves in cooperatively performing a 

joint task under the influence of a distributed algorithm. A fault-tolerant DCS 

concerns itself with the problems related to performing a cooperative task with 
potentially non-cooperative processes (a fault-tolerant system continues to perform 
its intended task despite failures in the underlying hardware/software). A DCS that 
can tolerate ‘Byzantine faults’ is termed as ‘Byzantine-resilient DCS’. The degree of 
fault-tolerance of a DCS is equal to the maximum number of faults that can be 
tolerated without affecting the overall system performance. The two classes of 
processes considered in the design of a fault-tolerant DCS are ‘synchronous’ and 
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‘asynchronous’ (Perry 1985). Systems in which there is a finite bounded delay on 
the operations of the processes and on their intercommunication time are said to be 
‘synchronous’. In such systems, ‘unannounced process deaths’, as well as long 
delays in the response from the processes, are considered to be faults. The 
processes execute the assigned tasks in lock step in ‘synchronous’ systems. In an 
‘asynchronous’ system, finite differences in the process speeds and message 
delivery time are allowed. In such a system, a very slow process cannot be 
distinguished from a ‘dead’ process. 

The interval of time during which each non-faulty process is able to exchange a 
message with all other non-faulty processes is called a ‘phase’. An ‘oral message’ is 
one whose contents are completely under the control of the sender (Pease et al 

1980; Lamport et al 1982), so a traitorous sender transmits any possible message. 
An ’authenticated message’ contains a portion of the message encoded in such a 
way that any receiver can verify that the message is authentic and the receiver can 
identify the sender, but no process can forge the signature of another (Pease et al 

1980; Lamport et al 1982; Dolev & Strong 1983). Thus no process can change the 
contents of a message. The definition of ‘oral message’ is embodied in the 
following: 

(a) every message that is sent is delivered correctly; 
(b) the receiver of a message knows who has sent it; 
(c) the absence of a message can be detected. 

3. The agreement problems 

One of the most important issues in a fault-tolerant DCS is that of reaching an 
agreement. In most applications, it is necessary for all processes to agree on the 
value broadcast by some process. Reaching an agreement is complicated by the 
presence of potentially faulty processes among the ‘participants’. The key point is 
not what the processes agree on but the fact that they must all come to the same 
conclusion. Though voting seems to be an obvious solution, since distinct reliable 
processes might receive conflicting votes from a faulty process, the processes might 
also reach conflicting conclusions about the outcome of the election and hence fail 
to reach an agreement. Moreover, voting demands substantial hardware thereby 
having a detrimental effect on the cost and reliability. Reaching agreement has 
been extensively studied in the literature (Pease et al 1980; Lamport et al 1982; 
Fischer 1983; Attiya et al 1984; Toueg 1984; Turpin & Coan 1984; Lamport 1984; 
Mahaney & Schneider 1985; Perry 1985). In particular, reaching agreement in the 
presence of ‘Byzantine faults’ has gained significant attention of the researchers. 

Three closely related agreement problems that have been extensively studied in 
the literature (Fischer 1983) are (i) the consensus problem, (ii) the interactive 
consistency problem, and (iii) the generals problem. The consensus problem is for 
the non-faulty processes to agree on a bit y, called the consensus value. A protocol 
for the consensus problem has to ensure that each reliable process i eventually 
terminates with a bit yt, and y, = y for all i. The bit y, in general, will depend on the 
initial bits xt for all 1 «£ i ^ n, where n is the number of processes participating. 
The protocol to solve this ‘consensus problem’ must satisfy the following 

conditions: 



84 L M Patnaik and S Balaji 

Agreement: All non-faulty processes agree on a common value. 

Validity: If all non-faulty processes choose the same initial value, then all 
non-faulty processes agree on this value. 

The next in the class of agreement problems is the interactive consistency’ 
problem. The interactive consistency’ problem is similar to the ‘consensus 
problem’ except that the goal of the protocol is for the non-faulty processes to agree 
on a vector Y, called the ‘consensus vector’. The last in the class of agreement 
problems is the ‘generals problem’ (Lamport et al 1982). The ‘generals problem’ is 
defined as follows: Given is a collection of n distributed, potentially faulty 
processes able to communicate only by means of messages. Assume that a 
distinguished process called the ‘general’ or ‘transmitter’ is trying to send its initial 
bit x to all other processes. The protocol for the ‘generals problem’ has to ensure 
that all the processes in the collection agree on the value x. The desired protocol is 
said to solve the ‘generals problem’ if it satisfies the following constraints: 

Agreement: All non-faulty processes agree on a common value. 

Validity: If the general does not fail, then all non-faulty processes agree on x. 

The ‘generals problems’ is referred to as ‘Byzantine generals problem’ in the 
literature. The name ‘Byzantine’ refers to a military scenario that was initially used 
to describe the problem (Lamport et al 1982). The version of the Byzantine 
generals problem is ‘synchronous’ or ‘asynchronous’ depending on the underlying 
collection of processes operating synchronously or asynchronously. 

Given a protocol for the ‘consensus problem’, the Byzantine generals problem 
may be solved by having each process choose the value broadcast by the general as 
its initial value. On the other hand, given a protocol for the Byzantine generals 
problem, the consensus problem may be solved allowing each process to execute a 
copy of the ‘Byzantine agreement protocol’. In view of this, in this paper, we will 
concentrate only on the ‘Byzantine agreement protocol’. 

A ‘Byzantine agreement’ is said to be ‘immediate Byzantine agreement’ (iba), if 
all non-faulty processes also agree during the phase at which they reach agreement. 
IBA is essential in cases where the processes are required to perform some 
synchronous action immediately after reaching agreement. Otherwise, we say that 
the agreement is ‘eventual Byzantine agreement’ (eba) in the sense that each 
process decides on its value y but cannot synchronize its decision with that of the 
others until some later phase. One example where it is enough to ensure EBA is 
while guaranteeing the consistency of a distributed database. In a distributed 
database, one must operate on the most recently updated version of the database. 
All that is necessary to be ensured is that the version chosen by all other parties to 
the agreement is one and the same. It may be noted that IBA implies EBA. It is 
possible that EBA can often be reached earlier than IBA (Dolev et al 1982). 

4. The Byzantine agreement protocols 

The motivation behind the development of Byzantine agreement protocols (bap) 

has been the realization, during the development of SIFT (Wensley et al 1978), that 
simple majority voting is not sufficient for obtaining ‘interactive consistency’ which 
arises in the synchronization of clocks, stabilization of inputs from sensors and 
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agreement on the results of diagnostic systems. It is shown by Pease etal (1980) that 
there exist protocols to guarantee ‘interactive consistency'. The three classes of bap 

studied in the literature are (i) deterministic BAP, (ii) randomized BAP, and 
(iii) approximate BAP. The deterministic BAP are capable of solving only the 
synchronous version of the Byzantine generals problem (bgp). Some of the 
randomized BAP that are reported in the literature are capable of solving both 
asynchronous and synchronous versions of the BGP. Approximate BAP help in 
situations wherein it is not possible to reach exact agreement. BAP are reported for 
both the cases of systems of processes that comftiunicate with one another through 
(i) ‘oral messages’ and (ii) ‘authenticated messages’. If a system can tolerate upto t 
failures and if / < t is the actual number of failures in the system, then it is 
sometimes possible to stop the execution of the protocol in fewer phases than the 
BAP takes when t failures occur. Protocols with this property are referred to in the 
literature as ‘early stopping protocols’. We will review the work done in the areas of 
‘synchronous’ and ‘asynchronous’ systems of processes using both ‘oral messages’ 
and ‘authenticated messages’. 

4.1 Deterministic Byzantine agreement protocols 

In this subsection, we consider algorithms for achieving Byzantine agreement 
among multiple processes. The context for this BAP is a network of unreliable 
processes that have a means of conducting several synchronized phases of 
information exchange, after which they must all agree on some set of information. 
Considerable work has been done in this area of ‘deterministic-’ Byzantine 
agreement. Tables 1 and 2 summarize, respectively, some of the unauthenticated 
and authenticated BAP in terms of their performance (number of phases of 

Table 1. Summary of unauthenticated BAP. 

Serial 

Number Reference 

Performance 

Number Number of 

of.phases messages IBA/EBA Remarks 

1 Lamport et al 

(1982) 
/ + 1 0(n,+ ') IBA n>3t 

2 Dolev & 

Reischuk (1982) 
/ + 1 il(n +12) IBA 

3 Dolev et al 

(1982a) 
2/ + 3 0(nt+ t3) IBA 

4 Reischuk (1985) 2/+3 Polynomial 
in n and t 

IBA n >20/ 

5 Fischer & 

Lynch (1982) 

t-f 1 — IBA 

6 Dolev et al 

(1982b) 

t+ 1 Polynomial 
in n and t 

IBA n>2t2 + 

3/ + 4 

7 Dolev et al 

(1982b) 

min(2/+ 5, 

2/+ 3) 

0(dnt2 V) EBA n close to 

3/ + 1 

8 Dolev et al 

(1982b) 
It + 3 Polynomial 

in n and t 

IBA n close to 

3/ + 1 
9 Dolev et al 

(1982b) 

min(/+ 2, 

/+!) 

Q(dnt2 V) EBA n>2t2 + 
3/+ 4 
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Table 2. Summary of authenticated BAP. 

Performance 

Serial Number Number of Number of 

Number Reference of phases messages signatures IBA/EBA Remarks 

1 Lamport et al 

(1982) 

t +1 0(nt+1) 

0(nt2 + t3) 

IBA n>3t 

2 Dolev & 

Strong (1982) 

t 4-1 0{nt + t2) 

Cl(n-ht2) 

IBA 

3 Dolev & 

Reischuk (1982) 

t+ 1 CL(nt) IBA 

information exchange and number of messages) and nature of BAP(lBA or EBA). In 
the tables, the symbols/, t and n denote the actual number of failures in the system, 
the upper bound on the number of potentially undetected faulty processes, and the 
total number of processes participating, respectively. The symbol d denotes the 
phase number at which the protocol terminates and V is the consensus vector. 

4.1a Two simple deterministic agreement protocols :We present below Pascal-like 
procedures for two simple deterministic Byzantine agreement protocols developed 
by Lamport et al (1982). The first algorithm uses oral messages and the second uses 
digital signatures (to avoid forgery of messages) for reaching agreement. These 
algorithms are used with suitable modification by Lamport & Melliar-Smith (1984) 
for achieving fault-tolerant clock synchronization. The procedures are self- 
explanatory. 

4.1b Unauthenticated protocol: 

PROCEDURE OraLMessage_Protocol (m); 
BEGIN 

Send_Message_to_All; (*to all processes which have not acted as sender so 
far*) 

FOR consensus := 1 TO n DO 
BEGIN 
FOR process := 1 TO n DO 

BEGIN 
Receive_Message (vprocess); 
(* process receives the message from the sender 

and adds it to the set vprocess*) 
(*Vprocess i= default if not received in time*) 

m := m — 1; 

IF m > = 0 THEN OraLMessage_Protocol (m); 
(* process recursively sends messages to all other 

processes which have not yet acted as sender*) 
Find_Majority (vprocess, ^consensus ) > 

(* return the majority of vprocess in vconsensus*) 
END; 

END; 
END; 
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4.1c Authenticated protocol: 

PROCEDURE Signed_Message_Protocol; 
BEGIN 

Sign_the_Message; (*sender signs the message for authentication*) 
Send_to_All; (*and sends the signed message to every other process*) 
FOR process := 1 TO n—1 DO (*repeat the following for every other 

process*) 
BEGIN 

Vprocess := [ ] (*empty set*) 
FOR round := 1 TO m + 1 DO (*ra is the degree of fault- 
tolerance*) 

BEGIN 
Receive_Message (msg, modified); 
IF NOT modified THEN (*if the msg is not modified*) 

BEGIN 

^process • ^process + msg; 
(*add the message msg to the set vproCess*) 

Append_Sign (msg); (*process appends its signature 
to the message msg*) 

Relay_to_Others_Yet_to_Sign (msg); 
END; 

END; 
Compute_Agreed_upon_ Value; 
(* decode the set vprocess using a predetermined 

deterministic function to get the consistency vector*) 
END; 

END; 

4.2 Randomized Byzantine agreement protocols 

The randomizing BAP employ randomly chosen numbers in the execution of 
protocols to reach an agreement. Two possible notions of randomized BAP are 
discussed in the literature (Rabin 1983). One notion is concerned with the protocols 
which achieve Byzantine agreement with a small probability of error (in consensus 
value). Given e > 0, we say that randomizing protocols, P,, 1 i ^ n, are 1 — e 

reliable BAP in the presence of upto t faulty processes, if for every fixed or 
randomized behaviour of upto t faulty processes, the non-faulty processes reach 
Byzantine agreement with a probability of at least 1 — e. We call this randomized 
BAP of type 1. The other notion of ‘randomizing protocols’ demands that for some 
constant c, the non-faulty processes achieve Byzantirj agreement within an 
expected number c of phases and without any error. We call this randomized BAP 

of type 2. 
Randomizing protocols have been studied in the literature for both ‘synchronous’ 

and ‘asynchronous’ versions of the Byzantine generals problem. Unlike the 
deterministic BAP the randomizing BAP circumvent the impossibility of Byzantine 
agreement for an ‘asynchronous’ system of processes. The notion of ‘randomizing 
protocols’ for the solution of BGP was first introduced by Rabin (1983). 
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Randomized bap of types 1 and 2 are discussed by Rabin (1983). Perry (1985) 
considers randomization as a means of achieving early stopping of the execution of 
the agreement protocols. Table 3 gives a summary of some of the randomized BAP 

reported in the literature in terms of their performance. 

4.3 Approximate Byzantine agreement protocols 

Clock synchronization and stabilization of inputs from sensors in a process control 
system are two examples where approximate agreement of messages is desired 
(Wensley et al 1978). Dolev et al (1983) consider a variant of the traditional 
Byzantine generals problem, in which processes start with arbitrary real values 
rather than with boolean values, and in which approximate rather than exact 
agreement is the desired goal. Dolev et al (1983) present algorithms to reach 
approximate agreement in both ‘asynchronous’ and ‘synchronous’ systems, under 
the assumption of a computation model in which processes can send messages 
containing arbitrary real values which the processes can as well store. For any 
preassigned e > 0, as small as desired, an approximate agreement algorithm must 
satisfy the following two conditions: 

Agreement: All non-faulty processes eventually halt with output values that are 
within e of one another. 

Validity: The value output by each non-faulty process must be in the range of the 
initial values of the non-faulty processes. 

Dolev et al (1983) assume the lower bounds on the number of processes for 
reaching approximate agreement to be 31 in the ‘synchronous’ case and 51 in the 
‘asynchronous’ case. Two agreement protocols to achieve approximate agreement 
are presented by Mahaney & Schneider (1985), which exhibit graceful degradation 
when as many as 2/3 of the processes are faulty. 

Table 3. Summary of randomized BAP. 

Serial 

Number Reference 

Authenticated/ 

unauthenticated 

Performance 

Number of Number of 

phases messages Remarks 

1 Rabin (1983) Authenticated 4 — t<n/10 
(synchronous & 

asynchronous) 
2 Perry (1984) Unauthenticated 

(synchronous) 3 — n>3t 
(asynchronous) 3 — n>6t 

3 Chor & Coan Unauthenticated 0(t/log n) 0(n2t/\ogn) n>3t 
(1984) (synchronous) 

4 Feldman & Micali Authenticated <7 (log n) t<n/3 
(1985) (synchronous) 

5 Broder & Dolev Authenticated 3/ + 3 t<n/2 
(1984) (synchronous) 
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5. Applications of Byzantine agreement protocols 

Though considerabie amount of work has been done in the area of Byzantine 
agreement, there has been a controversy among the research community with 
regard to the applicability of Byzantine agreement protocols, mainly because of 
high message overhead of these protocols. Some of the applications of Byzantine 
agreement protocols reported in the literature are (i) clock synchronization 
(Wensley et al 1978; Pease et al 1980; Lamport & Melliar-Smith 1984, 1985; 
Mahaney & Schneider 1985; Shin & Ramanathan 1987) (ii) fault-tolerant 
computer for nuclear power plant operations (Lala 1986; Lala et al 1986) 
(iii) real-time computing environment (Smith 1986) and (iv) distributed database 
management (Garcia-Molina et al 1986). In this section, we consider the specific 
case of clock synchronization and discuss the application of Byzantine agreement 
protocols to this significant problem of a DCS in the presence of malicious faults. 

For clarity of discussion, we begin with definitions of a few necessary terms. A 
‘clock’ is a device that periodically makes a transition between two successive clock 
states. The clock states can be conceived as being numbered consecutively. The 
time (T) that is directly observable in a particular clock is called its ‘clock time’. 
The ‘real time (7)’ is the time that is measured in the Newtonian time frame which is 
not directly observable. The clock can be defined as a mapping C from real time t to 
a clock time T such that C(t) = T. The inverse clock function is defined as 
r(T) = C_1(T) = t. The concept of clock synchronization is defined as follows 
(Johnson & Butler 1984): 
Two clocks rt and are synchronized within 8 of each other at time T if 

\rl(T)-ri(T)\ < S. 

Since the clocks can drift with respect to one another, it is necessary to 
synchronize the clocks periodically. A clock synchronization algorithm periodically 
resynchronizes the clocks in the system. Such an algorithm requires that each 
processor exchanges clock values with every other processor and processes these 
values to maintain sychronism. A fault-tolerant system needs a clock synchroniza¬ 
tion algorithm that works despite faulty behaviour by some processors and/or 
clocks. Construction of clock synchronization algorithms becomes difficult when 
the DCS is assumed to contain potentially malicious processors and clocks. Since the 
problem of clock synchronization is similar to that of agreement, a Byzantine 
agreement protocol with suitable modifications can solve the clock synchronization 
problem in the presence of malicious faults. Lamport & Melliar-Smith (1984, 1985) 
propose two algorithms known as ‘interactive consistency’ algorithms that are 
derived from Byzantine agreement protocols presented by Lamport et al (1982). 
The Pascal-like procedures presented in §4.1 hold good for the clock synchroniza¬ 
tion problem with the messages exchanged being the clock values. The first 
algorithm requires at least 3m + 1 non-faulty clocks to handle upto m faulty clocks. 
The second algorithm uses digital signatures for authentication and requires at least 
m +1 non-faulty clocks to tolerate upto m faulty clocks. Mahaney & Schneider 
(1985) present an ‘inexact agreement algorithm’ and discuss the applicability of this 
approximate Byzantine agreement algorithm to the clock synchronization problem. 
The Byzantine agreement protocol presented by Pease etal (1980) is made use of in 
the design of SIFT (Wensley et al 1978) computer for devising a clock synchroniza- 
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tion algorithm in the presence of Byzantine faults. All these algorithms assume a 
fully connected clocking system; that is, each and every clock in the network of 
clocks receives clock values from every other clock in the network. This assumption 
makes the design of the fault-tolerant clock synchronization mechanism complex 
because of the large number of interconnections required among the clocks. In a 
recent paper, Shin & Ramanathan (1987) propose a method that uses only 20-30% 
of the total number of interconnections required by the other methods that have 
been discussed above. The network of clocks/processors is assumed to exhibit the 
following properties: (i) the network of processors executes a number of jobs in 
parallel, (ii) each of these jobs is decomposed into a set of cooperating tasks that 
communicate closely with one another during the course of execution of the job, 
(iii) each job is assigned to a group of processors which are tightly synchronized, 
(iv) each group of processors is decomposed into redundant clusters, (v) each of 
the clusters in a group executes the same task for redundancy purposes. In view of 
these properties of the network, it is necessary to have intragroup and intergroup 
clock synchronization. The proposed method for clock synchronization makes use 
of the phase-locked algorithm (Krishna et al 1985) at two different levels. The 
phase-locked algorithm requires a fully connected network of 3m -I-1 clocks to 
tolerate upto rn malicious faults. By using the phase-locked algorithm, each clock 
synchronizes itself with respect to (i) all the clocks in its own group, and (ii) one 
clock from each of the other groups. This method greatly reduces the number of 
interconnections required for clock synchronization and seems to be promising in 
the context of a large network of processors. 

6. Conclusions 

The problem of obtaining ‘interactive consistency’ is one of the fundamental issues 
in the design of fault-tolerant distributed computing systems. It is realized by 
researchers that simple majority voting does not solve this problem, especially 
when the distributed computing system comprises potentially malicious compo¬ 
nents. When the problem of achieving extremely high reliability of the distributed 
computing system is faced, the Byzantine agreement protocols provide a solution to 
this problem. However, the solution seems to be inherently expensive. It is felt that 
the ongoing research in the areas of randomized Byzantine agreement protocols 
and the early stopping protocols will provide less expensive Byzantine agreement 
protocols. 

The encouragement extended by Mr P S Goel, Indian Space Research Organisa¬ 
tion Satellite Centre, Bangalore, during the course of this work, is gratefully 
acknowledged. 
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Fault tolerance in multiprocessor systems 
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Abstract. Multiprocessor systems which afford a high degree of 
parallelism are used in a variety of applications. The extremely stringent 
reliability requirement has made the provision of fault-tolerance an 
important aspect in the design of such systems. This paper presents a 
review of the various approaches towards tolerating hardware faults in 
multiprocessor systems. It emphasizes the basic concepts of fault 
tolerant design and the various problems to be taken care of by the 
designer. An indepth survey of the various models, techniques and 
methods for fault diagnosis is given. Further, we consider the strategies 
for fault-tolerance in specialized multiprocessor architectures which 
have the ability of dynamic reconfiguration and are suited to VLSI 

implementation. An analysis of the state-of-the-art is given which points 
out the major aspects of fault-tolerance in such architectures. 

Keywords. Dynamic architecture; fault-tolerance;, fault-tolerant com¬ 
puter architecture; multiprocessor systems; reconfiguration; system- 
level diagnosis; VLSI processor arrays. 

1. Introduction 

Fault-tolerant computing can be defined as the ability to execute specified 
algorithms correctly inspite of the presence of faults. The complexity of 
supersystems and the increasing use of such computer systems for critical 
applications have called for the consideration of fault-tolerance as one of the most 
important issues in the design of such systems. 

Real-time computer systems impose the most stringent fault-tolerant require¬ 
ments. A single faulty computation in such systems employed for computation- 
critical applications may result in the loss of human life or costly equipment. 
Moreover, the delay associated with fault recovery should be extremely small. 
Examples of real-time critical applications where fault-tolerant systems have to be 
utilized are in avionics computers for dynamically unstable aircraft, in spacecraft, 
traffic control, patient monitoring in hospitals and in anti-ballistic missile (ABM) 

defence applications. Other applications where fault-tolerant computers play a 
major role include long-life applications (e.g. unmanned spacecraft), applications 
requiring high availability (e.g. commercial services and telephone switching) and 
real-time signal processing. 
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From 1970 onwards, attention has been paid towards the technology of 
fault-tolerant computing. New theory and techniques for fault detection and error 
correction, fault modelling, analysis, synthesis, and architectures for fault-tolerant 
systems and their reliability evaluation are being developed; the ultimate aim is to 
design robust computers to meet the ever increasing fault-tolerance requirements 
in present day systems. One of the first operational computer with self-repair 
provisions was the JPL-STAR (Avizienis et al 1971). On the other side, the electronic 
switching system (ESS) was developed for high availability (Bell Labs 1977; Toy 
1978). Two very advanced research machines were developed for commercial 
aircraft control under the sponsorship of NASA-the FTMP (fault-tolerant multi¬ 
processor) (Hopkins et al 1978) and SIFT (software implemented fault-tolerance) 
(Wensley et al 1978). PLURIBUS (Katuski et al 1978), MICRONET (Wittie 1978) and 
tandem (Katzman 1978) are examples of other fault-tolerant computer systems 
developed for different applications. 

The advent of VLSI (very large scale integration) technology has resulted in the 
development of multiprocessor systems consisting of an interconnection of 
autonomous processing elements. Such multiprocessor systems are superior to 
uniprocessor architectures for a variety of real-time applications since they support 
highly parallel computations. But at the same time, multiprocessor systems have 
added new dimensions to the problem of providing fault-tolerance. The large 

number of processors in the system increase the system’s probability of failure. 
Correspondingly, complex mechanisms have to be incorporated for dealing with 
the effects of failures and providing greater system reliability. Further, the 
complexity of large multiprocessor systems dictate the need to develop complex 
fault models and methodologies for achieving the required level of fault-tolerance. 

Two approaches for hardware fault-tolerance in multiprocessor systems can be 
outlined: (1) static redundancy techniques; (2) diagnosis techniques. Fault- 
tolerance through static redundancy is achieved by replicating the processors. Each 
processor takes the same input and feeds a voter, which votes the majority of the 
outputs as the output of the processors. Thus faults occurring in a certain number of 
processors are, in effect, masked by this method. The latter approach involves a 
systematic sequence in which tests are applied to locate the faulty processors with 
consequent isolation of the faulty processors and recovery of the processes. 
Depending upon the diagnosis method, the faulty processors may be replaced by 
spares in which case the system’s throughput remains the same as before. On the 
other hand, spares may not be used and the system continues execution with 
performance degradation. These principles have been established by research over 
the past decade and several survey papers have appeared (Avizienis 1978; Rennels 
1980, 1984; Friedman & Simoncini 1980; Avizienis & Kelly 1984; Siewiorek 1984; 
Kuhl & Reddy 1986) which either examine a specific aspect of fault-tolerance or 
give an overview of fault-tolerance techniques in a restricted class of systems. In 
this paper, we present a survey of the methods for obtaining fault-tolerance in 
multiprocessor systems. Fault-tolerance through diagnosis of faults has been an 
active area of research and new models, techniques and methods for diagnosis are 
being reported. We present a fairly in-depth and state-of-the-art survey of 
system-level diagnosis. Further, we also consider the various strategies for 
fault-tolerance in specialized multiprocessor architectures which have the ability of 
dynamic reconfiguration and also those which are suited for VLSI implementation. 
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The multiprocessor system under consideration consists of autonomous proces¬ 
sor modules connected by an interconnection system (bus, direct links or switching 

networks). Each processor is equipped with a local memory which it can access by a 
local bus. The local memory of one processor module is accessible by other 
processor modules. A fault is assumed to manifest as a failure of the processors, 
while a fault in an interconnection facility is attributed to the failure of one or more 
processors which make use of that facility. Both distributed and centralized 
architectures are considered. 

2. Static redundancy techniques 

As mentioned earlier, in the context of multiprocessor systems, the utilization of 
extra hardware in a static redundancy scheme is at the processor level, with 
fault-tolerance being achieved by the replication of processors. A popular scheme 
used is the Triple Modular Redundancy (tmr) shown in figure 1. Here three 
identical processors take the same input and feed a common voter. The voter takes 
a majority vote to provide the correct output when a major number of processors 
are fault-free. It is seen that the tmr scheme can mask faults in any one of the 
processors. 

The TMR scheme can be extended to the NMR (u-modular redundancy) scheme, 
where n identical processors feed a common voter. Since the voter has to take a 
majority decision, the number of processors n should be odd. In this case, faults in 
upto {n— l)/2 processors can be tolerated. 

The main advantage of the TMR/NMR scheme is that it can mask errors 
instantaneously allowing programs to execute without interruption since there is no 
need for an error detection and fault recovery procedure. Hence it is used in 
systems employed for computation critical applications where even a small delay 
due to the occurrence of a fault can jeopardize the entire operation. 

However, the scheme can be viewed as a rigid and expensive way of achieving 
fault-tolerance. The power consumption is considerable since all the redundant 
processors need to be powered. Further, the voter has to be designed to provide 
very high reliability, since the failure of the voter can cause system failure. To 
overcome this problem, a redundant voter scheme is sometimes adopted (Su & 
Hsieh 1982) where the voter is also replicated. 

Many variations to the TMR/NMR scheme have been suggested to suit specific 
fault-tolerant requirements. One such scheme (Losq 1976) makes use of the 
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threshold voter in place of the majority voter. The voter output is 1 only if the 

weighted sum of its inputs is equal to or greater than its threshold M. Thus upto M 
faulty processors can be tolerated. The C.vmp (Siewiorek et al 1978) utilizes the 
TMR scheme with bidirectional voters. Su & DuCasse (1980) present a scheme for 
tolerating multiple faults. In this method, a 5mr system will automatically 
reconfigure into a TMR system when two modules fail simultaneously, and thus it is 
more efficient than the ordinary 5mr scheme. 

Another new technique is the (N, K) concept fault-tolerance (Krol 1986) which 
makes it possible to choose the ratio between memory and processor redundancy so 
as to minimize the total amount of hardware. 

3. Diagnosis techniques 

In contrast to the replication in hardware with consequent masking of faulty 
processors, another method of obtaining fault-tolerance in multiprocessor systems 
is by the automatic diagnosis of faulty units followed by system reconfiguration and 
a recovery of the processes, thus providing safe operation. This scheme removes 
the inflexibility of the static redundancy scheme inasmuch as it makes possible the 
repair or replacement of the faulty units or allows the system to work in a gracefully 
degraded fashion. But the trade-off for this advantage is the requirement of a 
technique for rapidly detecting and locating the faults. Almost all techniques for 
fault diagnosis consider the system to be partitioned into a number of subsystems, 
or units, and aim at unambiguously identifying malfunctioning subsystems upto a 
given multiplicity. What follows here is a brief survey of the theories, models and 
algorithms for system-level fault diagnosis. The techniques are presented with the 
view of any computer system in general and are applicable to multiprocessor 
systems, where our notion of each subsystem or unit refers to an autonomous 
processing element. 

3.1 System-level diagnosis 

Preparata et al (1967, PMC hereafter) proposed one of the first models for system 
diagnosis. The system is partitioned into a number of disjoint subsystems under the 
assumption that each subsystem or unit can be completely tested by some 
combination of other units. Each test so defined involves the controlled application 
of stimuli to the unit under test and the analysis of the ensuing responses resulting 
in the evaluation of the tested unit as being fault-free or faulty. The PMC model 
utilises a diagnostic graph in which the n units (uuu2,. . . ,un) of the system S are 
represented as nodes and the edges of the graph represent the connection 
assignment that assigns each unit to test a subset of other units. The outcome of a 
test in which w, tests Uj is denoted by at,, where a^ = 1 if unit ut finds unit Uj faulty 
and atj = 0 otherwise. If itself is faulty, a,y is unreliable. Given the set of test 
outcomes {«,,}, known as the syndrome, the problem is to identify all the faulty 
units in S. The PMC model gives the condition under which this is possible assuming 
that the system has atmost t faulty units. This has led to a measure called 
f-diagnosability. Further, all the t faulty units may be located under the application 

of a test set only once or under the application of the test set in a sequence of k 
steps, with some of the faulty modules being located and repaired at each step. 
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More specifically, a system is /-fault diagnosable without (with) repair if one test 
routine is sufficient to identify all (at least one) faulty units provided the number of 
such units does not exceed t. The /-fault diagnosability without repair (with repair) 
is also referred to as one-step diagnosability (sequential diagnosability). Preparata 
et al (1967) showed that if a system of n units is one-step /-fault diagnosable, then 
n 2= 2/ + 1, and each unit must be tested by at least / other units. For example, figure 
2a shows a 1-fault diagnosable system. It can be verified that any single faulty unit 
can be located from the syndrome, but the presence of two faulty units makes the 
syndrome unreliable. The optimal connection assignment for a 2-fault diagnosable 
system is given in figure 2b. PMC also gave optimal assignments for sequential 
diagnosis procedures. Hakimi & Amin (1974) showed that the conditions of PMC 

are sufficient if no two units test each other in the system. They also give a 
necessary and sufficient condition for a general system (which does not have the 
above restriction) to be /-diagnosable. Based on the PMC model, researchers laid 
emphasis on three main problems of system diagnosis: (a) determination of 
necessary and sufficient conditions under which a system is /-fault diagnosable. In 
other words, this is the problem of synthesis-to determine the set of tests given a 
predetermined value of diagnosability; (b) determination of the diagnosability of 
the system given the set of tests-the problem of analysis, and (c) development of 
efficient algorithms for diagnosis. 

In order to overcome the shortcomings of the PMC model and also to suit 
different environments, many generalizations were made in the graph model. 
Russell & Kime (1975a, b) formalize the model in terms of faults, tests and the 
relationships between them and represent the system of n units as 
S= {3%2r,F, G} where ^ = {/i,/2,... is the set of n possible faults, 
9" = {/i, t2, • • •, tp} is the set of p tests, F = {F1, F2,..., Fr) is the set of all fault 
patterns and G is a 2n *p array called the Generalized fault table having Gf =0,1 
or X, if for fault pattern FK present, test /; is known to always pass, always fail or 
has an unknown result. In contrast to the PMC model where each test completely 
checks exactly one unit [single unit per test (supt)] and is invalidated by exactly 

Ui X 0 0 0 1 

UI U 2 X X 0 0 1 

(a) 

Figure 2. Optimal connection assignment for (a) 1-fault diagnosable system (X represents 

unreliable output) and (b) 2-fault diagnosable system. 
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one unit [single invalidation per test (sipt)], the Russell-Kime model relaxes these 
assumptions and allows for multiple units per test (mupt) and multiple invalida¬ 
tions per test (mipt). This removes the restriction placed by the PMC model on the 
communication paths being fault-free. (The abbreviations SUPT, SIPT etc. were 
introduced by Holt & Smith 1981.) 

A simpler version of the PMC model, claimed to be more realistic, was introduced 
by Barsi et al (1976). The PMC model assumes that the test outcome is not 
predictable whenever the testing unit is faulty. This implies that if a faulty unit 
performs a test, a fault-free unit could be judged faulty or a faulty unit could be 
judged fault-free. This type of test invalidation is called symmetric invalidation. 
Barsi et al (1976) assumed that all invalidation takes the form of a correct unit being 
judged faulty, that is, if both the testing and the tested units are faulty, the test 
outcome is necessarily T\ This is called asymmetric invalidation. In this model, the 
tested unit is unambiguously fault-free whenever the outcome is 0, and this leads to 
simpler diagnosis algorithms. The following table gives the test outcomes for both 
types of invalidations. 

Hi uj 

Test outcome 

Symmetric 

invalidation 

Asymmetric 

invalidation 

Fault-free Fault-free 0 0 

Fault-free Faulty 1 1 

Faulty Fault-free 0 or 1 0 or 1 

Faulty Faulty 0 or 1 1 

Holt & Smith (1981) give the conditions for /-diagnosability with and without 
repair for systems with asymmetric invalidation. The other models for system 
diagnosis include the two-level model (McPherson & Kime 1979) which disting¬ 
uishes the fault level at which testing is performed and the part level at which 
diagnosability is defined. Thus it removes the restriction that the level of replacable 
units be the same as the level of functional units. Kime (1979) defines a model 
which gives a mathematical interpretation and encompasses the previous models. A 
model in which propagation of faults is considered for diagnosis has been proposed 
recently (Huang & Chen 1986). McPherson & Kime (1984) analyse a model for 
fault diagnosis where immediate repair of faulty units is not assumed and thus 
diagnosis is performed in the presence of faults which have already been 
determined by previous tests. Maheshwari & Hakimi (1976) take into account the 
probabilistic nature of the occurrence of faults, thereby removing the assumption 
that all faults are equiprobable. They present necessary and sufficient conditions 
for a system to be probabilistically /-diagnosable. 

For fault diagnosis with repair, Friedman (1975) proposes a new measure called 
/-out-of-s (t/s) diagnosability which assumes that some good units are also replaced. 
A system is t/s diagnosable if a set of/< / faulty units can be located and repaired 
by replacing atmost s units. Chwa & Hakimi (1981) give a characterization of t/t 
diagnosable systems. 

A number of efficient algorithms based on the above models and measures have 
been given: Meyer & Masson (1978) (one-step /-fault diagnosability with symmetric 
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invalidation); Smith (1979) and Butler (1981) (algorithms for t/s diagnosabihty); 
Ciompi & Simoncini (1979) (algorithm for /-fault diagnosabihty with repair) Meyer 
(1981) (algorithm for asymmetric invalidation) and Hayes (1976). Dahbura & 
Masson (1984) have exploited the graph theoretic properties of the graph model 
and have given an 0(n2 5) algorithm, which is the least complex as compared to 
other algorithms, for identifying faults in a /-diagnosable system. In an improve¬ 
ment of this work, they have identified a new class of systems, called 
self-implicating systems (Dahbura et al 1985). If a system is identified to be 
self-implicating, the diagnosis algorithm can be greatly simplified. Narasimhan & 
Nakajima (1986) give an algorithm for analysing the diagnosabihty of a system with 
asymmetric invalidation. 

So far, the faults in the system were considered to be of the permanent type. 
Mallela & Masson (1978) studied the diagnosis capabilities of systems with 
intermittent faults. They show that in contrast to a permanent fault diagnosable 
system, there exists only a single type of intermittent fault diagnosable system-a 
/-intermittent fault diagnosable system both with and without repair must satisfy 
the same necessary and sufficient conditions. They have extended this work to in¬ 
clude hybrid fault situations (Mallela & Masson 1980) which specifies bounded 
combinations of permanently faulty and intermittently faulty units in the system. 
Dahbura & Masson (1983) tackle the problem of intermittent faults and hybrid 
fault situations by a procedure called ‘greedy diagnosis’. Intermittent faults are 
diagnosed by a comparison syndrome, which is obtained by assigning each job to 
two units and comparing the outcomes of the two units. For hybrid fault situations, 
the procedure aims at diagnosing units as faulty as soon as they satisfy certain 
conditions. But the diagnosis procedure may become complicated in certain cases. 

3.1a Adaptive diagnosis: Nakajima (1981) proposed a new approach to system 
diagnosis called adaptive diagnosis. Instead of the normal procedure in which the 
test results are used to identify all the faulty units, this approach aims at identifying 
a fault-free unit first and then using this unit as a tester to identify all faulty units. 
Hakimi & Nakajima (1984) show that for systems with symmetric invalidation, a 
fault-free unit can be identified after the application of at the most (2/—1) tests. 
This implies that at the most (n — 1) H- (2/ — 1) tests are sufficient to identify all 
faulty units. An optimum adaptive algorithm has been presented for asymmetric 
invalidation also. The major limitation of adaptive system diagnosis is that every 
unit must be capable of testing every other unit. However, the number of tests 
required is reduced compared to conventional methods. 

3.1b Distributed diagnosis: In most of the above methods, it was assumed that a 
central unit which forms the hardcore of the system executes the fault diagnosis 
algorithm and determines the faulty units from the set of test outcomes obtained 
from other units. But in large multiprocessor systems, a central unit may not be 
available for coordinating the fault diagnosing procedures. Even if a central facility 
is possible, this unit could pose a reliability bottleneck. This has led to the 
development of distributed diagnosis algorithms for such systems by which all the 
fault-free nodes can independently produce correct diagnoses of the condition of all 
the other units. Typically in such systems, diagnostic messages which contain 
information concerning test results are allowed to flow between nodes and such 
messages may reach non-neighbouring nodes by passing through one or more 
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intermediate nodes. A message passing through a faulty node may be altered or 
destroyed. This makes the diagnosis problem more complicated in distributed 
systems. Once all the fault-free nodes of the system produce correct diagnoses, they 
can stop interacting with the faulty nodes and thus such units are logically isolated 
from the system. This concept of distributed fault-tolerance was introduced by 
Kuhl & Reddy (1980). Diagnosis algorithms for distributed systems are given in 
Kuhl & Reddy (1981) and Hosseini et al (1984). The main feature of the algorithms 
is that a diagnostic message is passed in such a way as to ensure its reliability. 
Specifically, a node «z will accept a diagnostic message from a neighbour Uj only if u( 
is a tester of Uj and is certain that Uj is fault-free. In this way, valid diagnostic 
information flows backward along paths of the diagnostic graph. A diagnosability 
measure for distributed diagnosis is given (Hosseini et al 1984) and using this 
measure, sufficient conditions are given for a system employing the algorithm to 
achieve a given level of diagnosability. 

Holt & Smith (1985) follow a different approach by relaxing the requirement that 
all good units be able to determine the location of all faults. Methods for diagnosis 
for repair and diagnosis for graceful degradation are considered. In the former 
case, identification of one faulty unit is sufficient and the diagnosis-repair cycle is 
repeated until the entire system is working. In the latter case, the goal is to identify 
some good sets of units that can remain in operation. The ‘roving diagnosis’ 
concept of Nair (1978) is useful for distributed diagnosis in which one portion of the 
system not performing computations at that time is utilised to diagnose another 
portion, while the remainder of the system continues normal operation. The 
processors which are diagnosed as fault-free in turn diagnose the other processors. 
Thus algorithm execution and system diagnosis can take place simultaneously. 

3.2 Recovery 

Following fault detection and diagnosis, the system undergoes a reconfiguration so 
that faulty processor nodes are purged out and replaced by spare nodes or the 
system continues to operate in a degraded mode. Recovery is the scheme for 
dealing with the damage caused by a fault (Kim 1979). All affected processes must 
be backed up or rolled back to a state which is fault-free. This scheme, known as 
backward error recovery, provides for recovery points (rp) for each process in the 
system. At each recovery point, all the necessary information about the current 
state of the process is saved. When applied to multiprocessor systems with many 
intercommunicating processes, the setting-up of proper recovery points poses a 
problem. To visualize this, consider the following example. 

Figure 3 shows three communicating processes in a system. The dashed lines 
between processes indicate points of interprocess communication. The left brackets 

([) represent the recovery points. If a fault was detected at point x in process A, 
only one recovery action needs to be done to back up to rA3. If an error was 
detected at point y in process B, then process B has to backup to rB3 and process A 
has to backup to rA2, and not rA3, since A communicates with B between rA2 and 
rA3. If an error at point z in process C is detected, then process C has to backup to 
rC3 and process B to rB2. This causes process A to backup to rAu and then process 
Chas to backup to rCx. Eventually, all three processes A, B and Chave rolled back 
to their starting point. This phenomenon is called the domino effect of recovery. 
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The amount of roll-back for each of the situations depicted above is shown by the 
curved lines, called recovery lines. To prevent the domino effect, proper recovery 
points should be established. For example, if we had a recovery point at 2' (before 
process B communicates with process C) then we can form a recovery line from rA2 
to rB2' to rC3. The selection of appropriate recovery points forms an important 
problem in multiprocessor systems with a large number of communicating 
processes. 

A roll-back recovery mechanism using hardware recovery blocks has been given 
by Lee & Shin (1984). Each processor module consists of a number of state-save 
units controlled by a monitor switch. At regular intervals, each module saves its 
state and executes a diagnostic test. If the processor is fault-free, then the current 
state is considered as the recovery point for the next interval. Otherwise, the faulty 
processor is purged out and the associated process will roil back to one of the 
previously saved states. Analytical results indicate that proper partitioning and 
allocation of tasks are necessary to reduce the probability of multistep roll-back and 
the domino effect. 

4. Reconfigurable architectures 

The ability of a multiprocessor system to reconfigure dynamically in order to purge 
out the faulty nodes is one of the aspects to be considered while designing the 
system. In addition to enhancing fault-tolerance capabilities, reconfiguration can 
also be used to restructure the system to suit the specific task being executed. This 
type of functional reconfiguration can increase the throughput of the system by 
matching the architecture to the algorithm. Many reconfigurable multiprocessor/ 
multicomputer architectures have been proposed and implemented, some of which 
have both functional and fault-tolerant reconfiguration capabilities (Kartashev & 
Kartashev 1980; Snyder 1982; Pradhan 1985b; Rucinski & Pokoski 1986), while 
some architectures are designed mainly to handle fault-tolerant reconfiguration 
(Negrini et al 1986; Raghavendra et al 1984; Pradhan & Reddy 1982; Pradhan 
1985a; Clarke & Nikolaou 1982). We discuss important methods adopted to obtain 
reconfiguration in some of the proposed architectures. Reconfiguration aspects 
pertaining to VLSI array architectures will be discussed in §5. 

The reconfiguration methodology adopted for fault-tolerance may serve two 
purposes. In one case, the reconfiguration may be able to disconnect the faulty 
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processors and simultaneously bring in spare processors so that the system will 
continue to work with the same throughput. In the other case, spares may not be 
used and the system may be reconfigured so that faulty nodes are effectively 
removed and the connectivity of the system is not lost. Here the system will 
continue to work with a degraded performance. Certain reconfiguration strategies 
may adopt a combination of the above two types, with spares being used to replace 
critical processors (which have a high probability of failure), the remaining 
processors being designed for graceful degradation. 

Two types of reconfiguration may be outlined: one is the logical reconfiguration, 
where no switching mechanism is employed and the processors are connected by 
direct links. The internode communication is established by logically routing the 
information so that the faulty processors are avoided. The second type is the 
hardware or physical reconfiguration, which makes use of a switching network to 
establish different connections. 

Any reconfiguration method should satisfy the following requirements. First, the 
time for reconfiguration should be minimal. Second, the bit size of the routing code 
required to route the information to various nodes under faulty conditions should 
also be minimal. Third, fast internode communication should be possible. This 
implies that the switching network used for reconfiguration should not introduce a 
large delay. Another important measure of the effectiveness of the methodology is 
the number of faulty nodes that can be reconfigured out of the system without 
losing the system’s connectivity. 

Pradhan & Reddy (1982) and Pradhan (1985a) propose reconfigurable fault- 
tolerant multiprocessor network architectures. The context of fault-tolerance 
considered here is that of direct link networks designed for performance 
degradation with logical reconfiguration. The networks are established by algebraic 
properties and exploiting the algebraic structure of the network yields optimality in 
terms of routing distance with faults, number of connections per node and the 
number of faulty nodes that could be tolerated. For example (Pradhan & Reddy 
1982), for a network with n = rm nodes, any two nodes i and j are connected 

if = jcj—i, 1 ^ w ^ ra-1, 

or iM = j^+u 0 ^ w ^ m-2, 

where (im-i... Mo) and (jm-i • • -jijo) are the radix-r representations of i and j 
respectively. This network has nr - (r2 + r)/2 data links and can tolerate upto 
(r— 1) faulty nodes. The architectures adopt self-diagnosis for use in a distributed 
environment. Pradhan (1985b) has proposed a similar architecture but with the 
added advantage of supporting functional reconfiguration. 

Raghavendra et al (1984) consider fault-tolerant reconfigurations in binary tree 
architectures. The scheme utilises one spare node per tree level and a number of 
redundant links which are connected by means of decoupling networks. Hardware 
reconfiguration is performed by setting switches in the decoupling networks by a 
host computer. One faulty node per level can be tolerated by this method. Another 
scheme for fault-tolerance with performance degradation is also given. In this case, 
the neighbour of a faulty node acts as a spare and makes use of redundant links for 
communication with the children of the faulty node. Hassan & Agarwal (1986) 
suggest a modular approach for fault-tolerant binary trees which uses redundant 
blocks. Each block consists of four nodes connected in such a manner that if any 
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one node goes faulty, the remaining three nodes can be restructured to form the 
binary subtree. This scheme removes some of the drawbacks of the method of 
Raghavendra et al (1984) by having localized switching control, less redundant links 
and higher reliability. 

4.1 Dynamic architectures 

An interesting class of reconfigurable multiprocessor/multicomputer parallel 
architectures, called dynamic computer architectures (Kartashev & Kartashev 
1980), is now under development. These architectures can be reconfigured to give 
variable width computers so that dynamic adaptation to varying degrees of 
instruction and data parallelism can be achieved. Another attribute of the dynamic 
architecture is its capability to function as a multicomputer/multiprocessor network 
characterized by different topological configurations among its computers. The 
high degree of parallelism and adaptability afforded by the dynamic architectures 
makes it suitable for real-time applications, like radar signal processing (Davis et al 
1982). 

One of the widely used computing structures of the dynamic architecture class is 
the reconfigurable binary tree. Kartashev & Kartashev (1981) have developed an 
efficient reconfiguration technique for a binary tree structure organized using the 
Dynamic Computer Group where each tree node is an autonomous computer 
element (CE) consisting of a processor element (PE), memory element (me) and I/O 

element (GE). With this technique, a binary tree structure with K nodes is 
established by providing an n-bit reconfiguration constant (n = log2K) called bias 
to all the tree nodes. For this purpose, each tree node is provided with an n-bit shift 
register called shift register with variable bias (srvb) (see figure 4) which stores the 
position code of the node. When a bias B is given, each node N generates the 
position code of its successor node N* by the following operation: 

TV* = 1[/V] © B, (1) 

where 1 [N] represents a one-bit noncircular left shift of N and © represents mod 2 
(EX-OR) addition. Thus N establishes connection with N*. For example, figure 5a 
shows a configuration of a binary tree of eight nodes (0,1,..., 7) when it receives 
bias B = 001. By changing the bias to B = 010, we get a new tree configuration as 
shown in figure 5b. With an zz-bit bias, it is possible to generate 2n different trees by 
this method. 

The fast reconfiguration technique and the availability of 2" configurations can 
serve as a powerful tool for enhancing the fault-tolerance of a binary tree with 

0 

A 2 Ai A0 

Figure 4. A 3-bit shift register with variable bias. 

a2a\a{) is the position code of the node. A2A ,/4() is 

the position code of the successor node obtained 

by application of bias b2bxb(). 
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Figure 5. Two configurations of a 8-node reconfigurable 

binary tree structure; (a) for bias B = 001, and (b) for 

bias B = 010 

multiple faults. Kartashev & Kartashev (1983) have suggested fast reconfiguration 
techniques by which all the faulty nodes in the tree can be purged out and the 
binary tree continues to work in a gracefully degraded fashion. Consider the 4-level 
binary tree with bias 14 and root 10 as shown in figure 6a. Suppose, during the 
course of the system operation, nodes 0,2,4,6 and 8 are found faulty. Then, by 
applying bias 3, the tree can be configured as shown in figure 6b, in which all the 
faulty nodes have been purged into the leaves positions. Now the binary tree can 
continue to work as a 3-level tree so that the connectivity of the fault free nodes is 
not lost. This type of gracefully degraded tree (gdt) is called 1-truncated GDT. 

Consider a second example (figure 7a) in which we have faulty nodes in both the 
leaf and nonleaf positions. Now the tree can be configured as shown in figure 7b, in 
which all the faulty nodes have been purged out into a 2-level end subtree. This 
type of GDT in which the faulty nodes form an /-level end subtree is called an 
/-truncated GDT. Kartashev & Kartashev (1983) have shown that finding the bias 
for a 1-truncated GDT can be done by a single mod-2 addition (one clock period). 
For the case of the /-truncated GDT, the bias can be found by a sequence of (/— 1) 
mod 2 additions. Once the bias has been found, reconfiguration can be performed 
by (1) during the time of a single clock period. 

Figure 6. (a) A 4-level binary tree with faulty nodes, (b) 1-truncated GDT. 
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Figure 7. (a) A 4-level tree with faulty leaves and non-leaves, (b) 2-truncated GDT with a 

2-level end subtree. 

5. Fault-tolerant VLSI processor arrays 

Fault-tolerance considerations in VLSl/wsi multiprocessor systems have received a 
lot of attention lately. Processor arrays which afford high parallelism are 
well-suited to VLSI or WSI implementation because of the regularity of their 
architecture and the locality of their interconnection structure. When a processor 
array is implemented on a single chip or wafer, the provision of fault-tolerance 
poses many extra problems not encountered in multichip or non wafer-scale 
architectures. First, the chip area should be utilised very efficiently. It has been 
shown (Mead & Conway 1980) that the probability of finding a fault-free circuit on 
chip decreases exponentially with the chip area. Hence excessive increase in chip 
area due to the introduction of fault-tolerance circuits may actually decrease the 
reliability of the system rather than enhancing it. Another consequence of an 
increase in area is a possible reduction in wafer yield (Koren & Breuer 1984). 
Hence the fault-tolerance circuits should be simple and regular and should occupy 
less area but, at the same time, should support a variety of fault-tolerance 
algorithms. The importance of maintaining a small chip area is evidenced by the 
fact that many fault-tolerance models (for e.g., Rosenberg 1985) measure the 
suitability of the design in terms of the area occupied. Second, ordinary fault 
models do not suffice in the VLSI environment. A physical defect, which may have 
occurred at production time, may render a large block of logic as faulty. Hence the 
fault model should be able to take care of such cluster distribution of faults also. 
Third, faulty processors on chip cannot be repaired or replaced. The alternative is 
to utilise spare processors and dynamically reconfigure the array to bring in the 
spares and purge out the faulty modules or allow for graceful degradation of the 
system. In the case of reconfiguration, the locality of the interconnections should 
be maintained and simple routing techniques should be adopted. Further, each 
processor should have self-testing circuits and it should be able to transmit its state 
(as faulty or fault-free) to its neighbouring processors by a single bit code. 

Negrini et al (1986) propose a number of reconfiguration algorithms for 
two-dimensional VLSI processor arrays which vary in terms of the probability of 
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survival to a given number of processor faults and the complexity of the 
reconfiguration-controlling circuits. To understand the basic principles involved in 

such algorithms, consider the 5*5 VLSI processor array shown in figure 8a. In 
addition to the 16 processors active under fault-free conditions, it has an extra row 
and an extra column of processors. In the event of multiple faults occurring in the 
array (figure 8b), the reconfiguration algorithm restructures the array into the 
fault-free array with the faulty cells by-passed. Variations to the straightforward 
restructuring in the above example include the “fixed fault stealing” and “variable 
fault stealing” algorithms (Sami & Stefanelli 1986) which are more complex but 
show an increased probability of tolerance to faults. Algorithms to deal with cluster 
distribution of faults is given in Negrini & Stefanelli (1985). Rucinski & Pokoski 
(1986) propose a reconfigurable architecture for executing systolic algorithms. The 
grid of processors is restructured to tailor the architecture to the algorithm being 
executed. The upper layer of processors monitors the structure and enables the 
system to reorganize itself in case of faults. 

Koren (1981) gives distributed algorithms for structuring arrays and trees on a 
grid of processors in the presence of faults. In particular, he addresses the problem 
of embedding a binary tree on the grid under faulty conditions. In this method, all 
processors in the row and the column of a faulty processor are configured as 
connecting elements thus isolating the faulty processor. Though the structuring 
algorithm is relatively simple, the technique results in many fault-free processors 
acting as connecting elements, and thus they are underutilized. 

Many fault-tolerant array architectures (Manning 1977; Fussell & Varman 1982), 
in addition to the one discussed above, have internal switching mechanisms inside 
each processor and the processors perform all the switching necessary to establish 
connections. Snyder (1982) suggested the CHip (Configurable, Highly Parallel) 
computer in which the switches are segregated from the PE. The CHiP architecture 
consists of a collection of PE, a switching lattice and a controller. Each switch 
contains memory which stores several configuration settings which enable it to 

Figure 8. (a) A VLSI array with faulty processors (shaded cells are faulty), (b) 

Reconfiguration of (a) to the fault-free array by utilization of spare processors. 
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establish connections among its incident data paths. The controller loads the switch 
memory with the configuration codes. In the event of a faulty processor being 
detected, a configuration code is broadcast to route around the faulty processor. 
This scheme utilises the fault-free processors adequately but the reconfiguration 
algorithms are complex. 

The Diogenes strategy (Rosenberg 1983) is a new approach for realizing testable 
fault-tolerant arrays with 100% utilization of fault-free processors. In this method, 
the processors are laid out in a line, with global busses running above the line. The 
connection of each processor to the bus is through switches which are controlled by 
control lines. For example, in the case of a linear array, only one control line 
(GOOD/) is sufficient (see figure 9) for each processor. GOOD/ = 1 if the processor is 
fault-free, and 0 otherwise. Thus, when the array of processors is scanned, only 
those processors with GOOD/ = 1 get connected while others are just by-passed. 
Thus it combines the advantages of having external switches and also simple and 
fast dynamic reconfiguration. But the global busses have to be fault-free and may 
thus pose a reliability bottleneck. Rosenberg (1983) also gives layouts for a binary 
tree, a pyramid and a rectangular grid. All these layouts aim at linearizing the 
topology to utilize the principle of the Diogenes strategy. 

So far, fault-tolerance with the utilization of spares has been considered. An 
alternative scheme is to allow for graceful degradation. Fortes & Raghavendra 
(1985) suggest schemes for graceful degradation of processor arrays wherein both 
the processor array and the algorithm in execution are simultaneously reconfi¬ 
gured. They have shown that any algorithm executable in a processor array can be 
reorganized to suit the reconfiguration properties and executed in the degraded 
array. 

A new method for fault-tolerance in a mesh-connected processor array is the 
algorithm-based fault-tolerance (Huang & Abraham 1984; Bannerjee & Abraham 
1986). In contrast to the reconfiguration techniques, this method aims at obtaining 
reliable results from computations by on-line detection and correction of faults. 
The algorithm is redesigned to execute encoded data and produce encoded results 
which can be used for fault detection. Both permanent and transient faults can be 
tolerated but the method is not applicable to a general computational environment. 
To visualize the basic principles involved in such a scheme, consider a matrix 
multiplication operation performed on a multiple processor system. Suppose 

GOODj 

"-O— 
GLOBAL BUS 

PROCESSOR; 
Figure 9. The processor layout in the Diogenes 

approach. 
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A = 
flu fln 

B = 
^11 bi2 
1 1 and C = A*B = 

"C\\ Ci2 

^21 a22 
7 b 21 b22 C21 c22 

We form augmented matrices 

a 11 <?i2 

a21 a22 

a3\ a32 

and B' = 
bn b\i b\3 

b2\ ^22 ^23 

A' has an additional row which contains the column checksum (that is, 

a3i = an + a2u a32 ~ ^12 + ^22) and B' has an additional column which contains 
the row checksum (that is, b13 = hn + b12; b23 = b2i~\-b22). Now 

A'*B' = C' = 
C11 c\2 C13 

C21 c22 c23 

c3l c32 c33 

It can be verified that c13 = cn+cl2;c23 = c21 + c22; c31 = cn + c2l;c32 = c12 + c22 
and c33 = c]3 + c23. In other words, the matrix multiplication operation has 
preserved the checksum property. The multiplication is executed on a processor 
array as shown in figure 10 and the results of the computation are stored in the 
corresponding processors (processor P,j stores the result c,y). Now the row 
checksum and column checksum are calculated and compared with the result 
obtained in the checksum row and the checksum column. If any single processor Ptj 
is faulty and has given an erroneous result, it will result in the checksum in the ith 
row and the yth column disagreeing with the calculated value. Thus the faulty 
processor can be located at the intersection of the ith row and the yth column and 
the result can be corrected (by adding the difference of the correct checksum and 
the obtained checksum to q,). It has been shown that the checksum property is 
preserved for other matrix operations like scalar product, addition, LU decomposi¬ 
tion and transpose. Algorithm-based fault-tolerance is also being investigated for 
other applications like the solution of Laplace equations. The overhead required in 
terms of the hardware redundancy and time for checking consistency is small 
compared to other schemes. 

b2j b22 b23 

bn b 12 bn 
» w 

Q\2 On 

022 021 

032 O31 
Figure 10. Checksum matrix multiplication in a 

mesh-connected processor array. 
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6. Conclusions 

Though a number of techniques for achieving fault-tolerance have been and are 
being developed, fault-tolerant technology has continued to pose many challenges 
to researchers. The increasing complexity of present day computer systems and the 
very high reliability requirements of the applications for which they are employed 
have resulted in a diversified approach towards fault-tolerance. There is as yet no 
comprehensive and universal method for fault-tolerance in multiprocessor systems. 
Future research should aim at designing a multiprocessor architecture which adapts 
to computational and reliability requirements by exercising both functional and 
fault-tolerant reconfiguration. In addition, the architecture should be suitable to 
VLSI implementation. 
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Abstract. Reliability and fault-tolerance issues are important in the 
study of interconnection networks used in large multiprocessor systems 
because of the large number of components involved. In this paper we 
study these issues with respect to multistage networks which are typi¬ 
cally built for N inputs and N outputs using 2x2 switching elements 
and \og2N stages. In such networks, the failure of a switching element or 
connecting link destroys the communication capability between one or 
more pair(s) of source and destination terminals. Many techniques exist 
for designing multistage networks that tolerate switch and/or link 
failures without losing connectivity. Several approaches for achieving 
fault-tolerance in multistage interconnection networks are described in 
this paper. The techniques vary from providing redundant components 
in the network to making multiple passes through the faulty network. 
Quantitative measures are introduced for analysis of the reliability of 
these networks in terms of the component reliabilities. Several examples 
are given to illustrate the techniques. 

Keywords. Multistage interconnection networks; parallel processing; 
fault-tolerance; reliability analysis; shuffle/exchange networks. 

1. Introduction 

With the present state of technology, building multiprocessors with hundreds of 
processors is feasible; several such projects are currently in various stages of 
development (Computer 1985; Hwang 1984; Pfister et al 1985). Many of these 
multiprocessors are designed and built for use in real-time applications. Fault- 
tolerance aspects play an important role in the reliability, availability, and safety of 
these systems. Communication networks used for processor-processor and proces¬ 
sor-memory information exchanges in such multiprocessor systems contribute 
significantly to the performance as well as reliability of the overall system. Design 
techniques to increase the reliability and fault-tolerance of interconnection 
networks are the subject of this paper. 

Ill 



112 C S Raghavendra and Anujan Varma 

There are two models of multiprocessor systems which use an interconnection 
network. In the first model a number of processors share a set of memory units and 
the interconnection network is introduced between them. For parallel access of the 
memory modules, the network should be able to perform many permutation 
functions. In the second model, the network interconnects a set of processor- 
memory pairs and is used for exchanging results during execution of programs. For 
both the models, it is possible to study the desirable properties of the network 
without losing generality. The interconnection of N processors to N memory 
modules is a difficult problem when N is large (typically N ^ 210). A crossbar 
network is ideal for both types of systems, as it would perform all the needed 
mappings. Flowever, the cost of a crossbar network grows very rapidly with the size 
of the system. Further, the cost of increasing reliability and fault-tolerance of 
crossbars is relatively high and thus is not cost effective for large systems. 

Several network topologies have been designed which require much less 
hardware than crossbars and they can be broadly categorized into static and 
dynamic topologies (Anderson & Jensen 1975). In a static scheme, each processor 
is connected by dedicated links to a subset of processors. Several static structures 
with regular topology have been proposed - these include ring (Liu 1978), tree 
(Harris & Smith 1977), near-neighbour mesh (Barnes et al 1968), hypercubes (Seitz 
1985), systolic arrays (Kung 1982), and pyramids (Tanimoto 1983). A comparative 
study of these static networks can be found in Wittie (1981). In these networks, 
each processor can directly communicate only with a small number of processors, 
and communication with others involves the transfer of information through one or 
more intermediate processors. 

Dynamic networks allow different connections to be set up between processing 
elements by changing their internal states. Multistage switching networks, which 
consist of cascaded stages of switching elements, are networks with a dynamic 
topology. Several multistage networks with N = 2" inputs and outputs and log2/V 
stages of 2x2 switching elements have been studied in the literature (Feng 1981). 
These networks contain 0(N \og2N) gates which can be significantly less than the 
0(N2) required by a crossbar network. For example, figure 1 shows a multi¬ 
processor system with 16 processors interconnected through an omega network. In 
this paper we study the reliability and fault-tolerance aspects of such multistage 
networks. 

At the other end of the spectrum, the linear bus offers a simple and inexpensive 
means of communication for a system with a small number of processors. 
Bus-based architectures have been used successfully in many commercial multi¬ 
processor systems and several standards for such buses have evolved; their 
advantages include simplicity, low cost, availability of standard hardware, and ease 
of expansion. However, the communication bandwidth of such systems is limited; 
moreover, the architecture is susceptible to single-point failures, resulting in low 
reliability. Also, the number of elements that can be connected to the bus is limited 
by the fan-in/fan-out constraints of the bus-interface elements, and the operational 
speed is limited by the physical capacitances associated with the bus. The 
communication bandwidth and reliability can be improved by the use of multiple 
buses (Lang et al 1982). 

In large interconnection networks the reliability and fault-tolerance issues 
become important. As the number of switching elements and links increases, the 
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Figure 1. A multiprocessor system with 16 processors interconnected through an omega 
network. 

chance of one or more failures becomes higher. Multistage networks with log2N 
stages of 2 x 2 switching elements provide a unique path between every pair of 
source and destination terminals. Therefore, the failure of a single switching 
element or connecting element destroys the paths between several input-output 
pairs. Several approaches have been investigated to improve the reliability and 
fault-tolerance of multistage networks. These include providing redundant copies 
of the network to create multiple disjoint paths between terminal-pairs (Reddy & 
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Kumar 1984; Raghavendra & Varma 1984), adding one or more extra stages 
(Adams & Siegel 1982) and adding extra switching elements and links to introduce 
redundant paths between source and destination terminals (Ciminiera & Serra 
1982; Padmanabhan & Lawrie 1983; Parker & Raghavendra 1984). Path 
redundancy can be introduced in an existing network, or a new network can be 

designed with redundant connections. 
This paper is organized as follows: In the next section some basic principles of 

design and operation of multistage networks are presented. In §3, various 
techniques for designing fault-tolerant interconnection networks are discussed. 
Reliability measures and evaluation methods are presented in §4. Finally, summary 
and conclusions are given in §5. 

2. Multistage interconnection networks 

Multistage networks are typically designed using log2/V stages of 2 x 2 switching 
elements to connect N = 2n inputs to N outputs; each stage has N/2 switching 
elements. They can also be built using larger switches and a correspondingly less 
number of stages, with similar properties. There exist many different topologies for 
multistage interconnection networks which are characterized by the pattern of the 
connecting links between stages. The omega network shown in figure 1 maintains a 
uniform connection pattern between stages, known as the perfect shuffle (Stone 
1971; Lawrie 1975), many other multistage networks have non-uniform connection 
patterns between stages. The minimum requirement of any of these networks is to 
provide full access capability, which means that any input terminal of the network 
should be able to access any output terminal in one pass through the network. 

Multistage networks differ in the interconnection pattern between stages, the 
type and operation of individual switching elements, and the control scheme for 
setting up the switching elements. Examples include the baseline (Wu & Feng 
1980), omega (Lawrie 1975), banyan (Goke & Lipovski 1973), the indirect binary 
/7-cube (Pease 1977), flip (Batcher 1976), and delta (Patel 1981) networks. The 
topological equivalence of several of these networks has been established (Agrawal 
1983; Parker 1980; Wu & Feng 1980). In multistage networks, data must flow 
through several switching stages; hence, these networks may have a longer internal 
delay as compared to a crossbar. 

An important characteristic of these multistage interconnection networks is the 
unique-path property. This means that each source has exactly one path through the 
network to reach any particular destination. Moreover, the routing of data from 
source to destination can be performed in a distributed manner using the 
destination address as routing tag. For example, the route taken by a source with 
binary address s„ _ i sn _2 ... s0 to destination dn _ i dn _2 . .. d0 in an omega network 

will be uniquely specified by the path code as sn-iSn-2- . . s0 dn~ldn_2 • • • d0. The 
position of the path in any intermediate stage of the network can be found by 
observing a log2V-bit long window in the path code. Conflicts can arise while 
routing multiple connections (or permutations) through such networks when two 
inputs request the same output link of a switch in some intermediate stage. 

This class of networks does not realize all the possible permutations of data 
between inputs and outputs. Networks capable of realizing all the N\ permutations 
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between the N inputs and outputs are known as rearrangeable networks. The 

omega network shown in figure 1 does not possess this property since many 

permutations cause conflicts in one or more of the switching stages. The number of 

passable permutations can be increased by increasing the number of stages. This 

also introduces multiple paths between source and destination terminals. However, 

the control algorithm to find non-conflicting paths for arbitrary permutations in 

such networks can be quite complex. A well-studied multistage rearrangeable 

network is the Benes network (Benes 1965) which consists of 2 log2/V— 1 stages of 

2x2 switching elements. A serial cascade of the ojnega network with its inverse 

network also displays this property. 

Only a limited set of permutations is required in some computational 

environments, and multistage unique-path networks will be adequate in such cases. 

A control algorithm is required to set up the switching elements for performing 

various permutations. It is necessary to have small setup times in an environment 

where the switching permutations change rapidly. While the control of a crossbar is 

relatively straightforward, the algorithm for finding the switch-settings in some 

multistage networks is more complex. 

Although the unique-path property facilitates simple routing, it has a negative 

effect on the reliability of the network. If a switch fails, no paths can be routed 

through that switch, and therefore several source-destination pairs will not be able 

to communicate. Clearly, the full access capability is lost when there is a fault in the 

network. Some form of redundancy is necessary to maintain full access capability in 

the presence of faults. Several approaches to increase reliability and fault-tolerance 

have been studied by researchers. These include providing multiple layers of 

subnetworks, adding extra switching stages, employing larger-size switches and 

extra links, and making multiple passes through the network. Some of these 

techniques are discussed in the next section. 

3. Fault-tolerance techniques 

In this section we study some of the fault-tolerance techniques for multistage 

networks. In a unique-path non-redundant network, such as the omega network, 

any single failure will destroy the full access property of the network. Most of the 

fault-tolerance schemes are aimed at maintaining full access in the presence of one 

or more component failures. Many methods of designing fault-tolerant multistage 

networks by incorporating redundant switching elements and links have been 

explored in the literature. It should be noted that switch-failures in the first and last 

stages of the network can be tolerated only by connecting each source and 

destination to multiple switching elements in the first and last stages of the 

network, respectively. Many fault-tolerant networks do not provide such redun¬ 

dancy and hence the fault-tolerance in such networks is restricted to faults in 

switching elements and links in the intermediate stages of the network. 

3.1 Redundancy at the network level 

An approach to design fault-tolerant networks is to use multiple copies of a basic 

network such as the omega network. A class of fault-tolerant networks of this type 
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is the generalized Indra networks (GIN) (Varma & Raghavendra 1985) which can 

be viewed as the union of L parallel layers (or copies) of a basic network with an 

initial distribution stage; each basic network is a delta network constructed from 

R x R switches. The switch-size R and the redundancy L determine the 

fault-tolerance capability of the network. This network is shown in figure 2. The 

interconnection pattern between stages of each subnetwork is the generalized 

shuffle (Patel 1981). The initial distribution stage consists of N switches, each a 

crossbar of size Rx L. On the input side, each source terminal is connected to R 

different switches as shown in figure 2. On the output side, the output terminals of 

the L subnetworks converge on the N destination terminals. 

In the GIN, there exist R. L paths between any source and destination and the 

route can be specified by a (2m + l)-digit path, where m — log/^/V. The first m digits 

in the path code specify the source address and the last m digits specify the 

destination address in the radix-/? number system; the intermediate digit is a 

radix-/, digit that can be selected arbitrarily. The GIN maintains the simple 

Source Stage 0 
RxL 

Destination 

Figure 2. Construction of a generalized Indra network (GIN). 
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tag-based routing of connections; the last (m+ 1) digits of the path code are used as 

the routing tag. Further, there are multiple ways of realizing permutations in the 

GIN. Since each of the subnetworks is a delta network, any permutation passable by 

the delta network can be realized even when there are many faults in the network. 

Moreover, many permutations which produce conflicts in the delta network can be 

routed on the GIN by partitioning the connections into non-conflicting sets and 

passing each set through a different layer of the network. This routing problem can 

be formulated as a vertex-colouring problem in graph theory (Varma & 

Raghavendra 1985). 

The Merged Delta Networks (mdn) (Reddy & Kumar 1984) are constructed by 

combining d identical layers (copies) of N/d x N/d delta networks to form a network 

with N inputs and outputs. The basic difference between an MDN and a GIN is that 

the MDN allows connections to cross layers between stages of the network, whereas 

a connection is confined to a single layer in the GIN. Given d copies of delta 

networks, each with N/d inputs and outputs and consisting of R x R switching 

elements, an MDN is constructed as follows: 

1. Increase the size of all switching elements to R. d x R. d. 

2. If an input(output) terminal / of the network was originally connected to switch j 

in the input(output) stage of one of the delta networks, connect it to switch j in the 

input(output) stage of all the delta networks. 

3. If a switch j in some stage / of the delta network was originally connected to 

switch k of the stage (/+ 1), connect it to switch k in stage (/+ 1) of all the delta 

networks. 

An MDN constructed from d copies of delta networks is referred to as a d-MDN. 

Figure 3 shows a 2-MDN consisting of 8 inputs and outputs constructed from two 

identical copies of delta networks of size 4. 

Figure 3. A 2-MDN with 8 inputs and outputs. 
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Another example of combining multiple layers of networks to obtain fault- 

tolerance is the class of Augmented C-Networks (ACN). The omega network has 

the property that for each switching element in every stage, except the last, another 

switching element exists in the same stage such that they are connected to a 

common pair of switches in the next stage. Such a pair of switches is called 

“conjugates" (Reddy & Kumar 1984) or “output buddies" (Agrawal 1983). 

Networks satisfying this property are called C-networks and can be used to 

construct Augmented C-Networks (acn) (Reddy & Kumar 1984). An ACN with 

N = 2" inputs and outputs is constructed from an omega network of the same size 

as follows: 

1. Replace each 2x2 switch by a 4x4 switch. 

2. If an input terminal in the original network is connected to a switch j in the input 

stage of the network, connect the input terminal to the conjugate of j also. 

3. If an output terminal of the network was initially connected to switch j of the 

network, connect it also to the switch (/ + /V/4) mod M2. 

4. For every stage / except the last, if a switch j is connected to switches k, k' of 

stage (/ + 1), connect its two new outputs to the conjugates of k and k' in stage 

(/ + 1). 
Figure 4 shows an ACN with N = 8 inputs and outputs constructed from an 

omega network of the same size. The added links are shown by broken lines. 

3.2 Redundant stages in the network 

Adding redundant copies of networks is an expensive solution, but allows routing 

of classes of permutations even when there are multiple switch-failures. If only the 

Figure 4. An ACN with N — 8. 
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full access capability is required, then extra switching stages can be used to provide 

multiple disjoint paths between source and destination pairs. This technique 

provides fault-tolerance at a modest overhead. Examples include the Extra-stage 

cube network (Adams & Siegel 1982) and banyan networks with redundant stages 

(Cherkassky et al 1984). 

Figure 5 shows an extra-stage omega network obtained by adding a redundant 

switching stage at the input of the network. The extra stage allows the network to 

retain its full-access capability in the presence of single switch-failures in any stage 

except the first and the last. For all single failures in the intermediate stages, the 

network can also route permutations by performing multiple passes, each pass 

realizing a submap of the permutation (Varma & Raghavendra 1986a). 

3.3 Other fault-tolerant designs for full access 

Multistage networks designed to. provide full access in the presence of faults include 

the Augmented Data Manipulator (ADM) networks (McMillen & Siegel 1982), the 
gamma network (Parker & Raghavendra 1984), the F-network (Ciminiera & Serra 

1982), and the modified omega networks (Padmanabhan & Lawrie 1983). These net¬ 

works use enhanced switching elements and/or additional links between stages to 

provide multiple paths between input/output pairs, thereby achieving fault-tolerance. 

The ADM and Inverse ADM (iADM) networks as well as the gamma network are 

based on ±2' interconnection between stages. They use switching elements with 

three inputs and outputs except in the input and output stages, where the switches 

are 1 x 3 and 3x1, respectively. Each of these networks has {n + 1) switching stages 

Figure 5. The extra-stage omega network. 
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for N = 2" inputs and outputs. At stage i of the IADM, the outputs of a switch j are 
connected to the switches /, (/ + 2') mod A, and (j — 2‘) mod A, of the (z + l)th 
stage. The gamma network uses the same interconnection patterns as the IADM. 
The difference between the adm/iadm networks and the gamma network is that 

the switching elements in the former networks allow only one connection to be 

routed at a time, whereas the switching elements in the latter are 3x3 crossbars. 

Figure 6 shows the gamma network for A = 8. The set of paths between a 

source-destination pair in the gamma network can be specified using the binary 

fully-redundant number system. Under this system, a digit can take one of the three 

values - 0, 1, and I (T stands for —1). An input-output connection can be routed 
by means of a /7-digit routing tag which is the modulo-A difference between the 

destination and the source expressed in binary redundant number system. The 

value of the routing tag can be used in a straightforward manner to set up the path 

in the network. A switch in stage / needs to examine only the zth digit of the tag: if 

this digit is 0, the straight connection is used, if 1 then the downward ( + 2') link is 

used, and if I then the upward ( — 2') link is used. When the source and destination 

are distinct, there are multiple representations for the routing tag; hence there are 

multiple paths for routing the connection in the network. 

3.4 Time-redundancy for dynamic full access 

The techniques discussed above achieve their fault-tolerance by means of 

redundant hardware. An alternate approach to fault-tolerance is obtained by 

means of redundancy in time. Thus, data may be routed in a unique-path network 

in the presence of faults by performing multiple passes through the network. When 

a fault-free path is not available, it may still be possible to route data from the input 

terminal to the output terminal in multiple passes by routing through intermediate 

destinations if the input and output terminals of the network are connected to the 

same set of nodes. This approach is useful when a unique-path network is used for 

processor-processor connection. The network is said to possess dynamic full access 

(dfa) capability if every processor in the system can communicate with every other 

processor in a finite number of passes through the network, routing the data 

through intermediate PE if necessary (Shen & Hayes 1984). Even though the failure 

of a single component destroys the full access capability of the omega network, a 

large number of faults do not destroy the DFA capability. Thus, by devising a 

routing procedure that allows routing through intermediate processors, connectiv¬ 

ity of the system can be maintained. 

It has been shown that the DFA capability is maintained under a large number of 

faults. A maximum of (log2A — 2) passes through the network are shown to be 

sufficient for the communication between any two processors in the system for a 

network of size A ^ 32 if the faults satisfy certain conditions (Varma & 

Raghavendra 1986b). The reconfigured system operates in a degraded mode owing 

to the increased latency and the additional blocking and congestion introduced by 

the loss of paths. However, a large waste of computational effort and resources 

associated with the reassignment of processors is prevented under this scheme. 

3.5 Discussion 

Of the various techniques described in this section, schemes incorporating 

network-level redundancy are the most general; such schemes are capable of 
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Figure 6. The gamma network for N = 8. 
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tolerating a certain minimum number of faults occurring anywhere in the network 
without affecting performance significantly. However, these networks are expen¬ 
sive to build, particularly when the network size is large. Time redundancy is the 
least expensive technique to implement since it requires no extra hardware in the 
network. However, the technique is also the least powerful since not all single 
faults in the network are tolerated and faults cause a significant degradation in 

performance. 
Most of the techniques proposed in the literature fall somewhere between these 

two extremes, that is, between zero and 100% redundancy. A majority of these 
schemes do not tolerate faults in the input and output stages of the network. It 
should be noted that the only way of tolerating faults in the input and output stages 
is by providing redundant links from processors and by increasing the size and/or 
number of switching elements in these stages. Alternately one could treat the first 
and last stages as the hard core of the system or regard them as part of the 
processors. Faults can occur in the first or last stages, but these are treated as 
processor faults. 

4. Reliability analysis 

Fault-tolerant interconnection networks are capable of retaining the full access 
capability in the presence of one or more faulty components. One way to quantify 
the capability of networks in sustaining failures is by evaluation of the terminal 
reliability between individual input and output terminals. Terminal reliability, 
generally used as a measure of the robustness of a communication network, is the 
probability of the existence of at least one fault-free path between a designated pair 
of input and output terminals. The terminal reliability is usually expressed as a 
symbolic expression in terms of the individual reliabilities of the switching elements 
and the connecting links of the network. Most of the multistage interconnection 
networks have a uniform topology and the terminal reliability in such networks is 
independent of the relative position of the input and output terminals considered. 
The gamma network, however, has a terminal reliability that is a function of the 
relative position of the input and output terminals. 

For the evaluation of the terminal reliability of a redundant-path interconnection 
network, the set of paths in the network between the given pair of terminals is 
represented as a directed graph, sometimes referred to as the redundancy graph 

(Padmanabhan & Lawrie 1983a), with its vertices representing the switching 
elements and edges representing the connecting links. The vertices and edges are 
then weighted with the reliabilities of the components they represent. This graph 
can then be used to formulate the terminal reliability expression between the 
source and destination nodes. Several algorithms exist for the efficient computation 
of terminal reliability expressions of computer communication networks (Abraham 
1979; Grnarov et al 1980; Hariri & Raghavendra 1986) which can be applied to 
interconnection networks as well. However, such algorithms do not explicitly make 
use of the structure of the paths and result in wasteful computation when the 
network has a regular topology. In many cases, the regular structure of the 
redundancy graph of an interconnection network can be used to derive reliability 
expressions in an iterative or recursive manner. 
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Another useful measure of the reliability of an interconnection network is the 
probability of full access from a given input terminal of the network; under this 
criterion, the network is considered failed when a connection cannot be made from 
the given input terminal to one or more of the output terminals. This reliability 
measure is sometimes referred to as the Source-to-Multiple Terminal Reliability or 
SMT reliability (Satyanarayana & Hagstrom 1981). A stricter measure of reliability 
is the network reliability, which is the probability that every input terminal of the 
network has full access. 

For the reliability analysis, we assume that all the switches have identical and 
constant failure-rates A, and that the switch failures are statistically independent. 
The failures are assumed to follow a general Poisson distribution. With these 
assumptions, the reliability function for a single switching element in the network is 
given by 

pit) 

where p(t) represents the probability of the element being operational during the 
interval (0, /). For convenience, we will refer to p(t) simply as p. Without loss of 
generality, we consider only switch-failures and assume that links do not fail. 
Failures of links can be accounted for in this model in a straightforward manner by 
considering them as part of the switching elements. 

Another useful measure of network reliability is its mean time to failure (MTTF). 

The mttf of a system is defined as the expected time of the first system failure, 
given the successful startup at time zero. For a system with reliability function R(t), 

the MTTF is given by 

MTTF 

p GO 

R(t)dt. 

In a unique-path multistage network like the omega network, the terminal 
reliability is simply pn, the series-combination of the reliabilities of the n switching 
elements in the path. For full access from an input terminal, every switch in the tree 
from this terminal to the output of the network should be fault-free; there are N — 1 
switching elements in this tree which gives the full access reliability as pN~x. 

Finally, full access from all the input terminals requires all the switching elements 
to be fault-free, so that the network reliability is pNn'2. These expressions serve as 
lower bounds for the reliability of fault-tolerant multistage networks. 

The computation of reliability expressions for a fault-tolerant network, in 
general, is more complex because of the multiplicity of paths involved and the 
interaction between them. In this section, we show the computation of the 
expressions for the ACN for illustration. 

Figure 7 shows the redundancy graph of the ACN with N = 2n inputs and outputs 
between an input terminal 5 and output terminal d. Because of the uniformity of the 
network, the redundancy graph is identical for all input-output connections. The 
graph has four nodes in every stage except the first and the last. The graph in figure 
7 can be reduced to that in figure 8 by combining pairs of nodes into composite 
nodes. Each of the composite nodes in figure 8 has reliability px = 1 — (1 — p)2. The 
terminal reliability of the ACN is hence given by 

TRACN = p2i[i-(i-pr2)2]. (3) 
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Figure 7. Redundancy graph of the ACN between input terminal s and output terminal d. 

Figure 9 shows the redundancy graph of an ACN with N = 32 between an input 
terminal 5 and the 32 output terminals. Each node in figure 9 is a composite node 
with reliability px. For an ACN with N = 2" inputs and outputs, the reliability for 
full access from an input terminal is given by 

FRacn = P\-Rain), (4) 

where Ra(n) is given by the recurrence equation 

Ra(n) = 2px{\-px)p^2" ~-V) + p]Rl(n-\), (5) 

for n ^ 3 with R(,{2) = px. 
This recurrence equation is obtained by considering the redundancy graph as two 

tree-shaped graphs, each rooted on one of the nodes in the second stage and with 
common leaf nodes. The first term is obtained by considering one of the root nodes 
as faulty, and the second occurs when both are fault-free. 

Figure 10 shows the redundancy graph of a 2-mdn with N = 2" inputs and 
outputs between input terminal s and output terminal d\ figure 11 shows the same 
graph for a generalized Indra network with switch-size R and number of layers L. 
The terminal reliability of these networks can be evaluated using similar 
techniques. A comparison of the MTTF for a single input-output connection of the 
three networks is shown in table 1. The MTTF was obtained by integrating the 
terminal reliability function numerically. A switch failure rate of 1 per million hours 
was assumed for every 4x4 switch. The GIN of redundancy 2 uses 2x2 switches, 
and the failure rate of the individual switches in this network was taken as 0-25 per 
million hours. The ACN and 2-mdn use 4x4 switches. 

So far our criterion for reliability was the capability of the interconnection 
network to provide connections from input terminals to output terminals. When a 

Stage 0 1 2 n-3 n-2 n— 1 

Figure 8. Reduced redundancy graph. 
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Figure 9. Redundancy graph of the ACN with N = 32 between input terminal s and the 

32 output terminals. 

stage 0 1 n—3 n-2 

Figure 10. Redundancy graph of a 2-MDN between input terminal s and output terminal d. 

Table 1. Comparison of MTTF of some fault-tolerant networks for 
one-to-one connections. 

MTTF (million hours) 

Network 
size (N) 

GIN 

(R = 2) 

GIN 
(R = 4) ACN 2-MDN 

16 1-6028 1-0435 0-7115 0-6999 

32 1-3453 — 0-6319 0-5821 
64 1-1588 0-8028 0-5717 0-5063 

128 1-0177 — 0-5246 0-4527 
256 0-9071 0-6506 0-4868 0-4124 

512 0-8181 — 0-4556 0-3807 
1024 0-7451 0-5463 0-4294 0-3551 
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stage 0 l m 
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Figure 11. Redundancy graph of a GIN. 

redundant-path interconnection network is used to connect processing elements 

(PE) among themselves, the reliability of the system depends on the reliability of 

the PE as well as that of the network. In practice, the PE are more complex than the 

switching elements in the network, and are more prone to failures, unless some 

mechanisms for fault-tolerance are provided. Instead of making the PE and the 

interconnection network fault-tolerant individually, an alternate technique is to 

construct the system with a larger number of processors than is necessary and 

connect them through a larger-size network. Thus, a multiprocessor system with N 

active PE can be designed with M > N PE connected through an Mx M 

interconnection network; the availability of a subset of N fault-free PE with 

communication capability among themselves is sufficient for the operation of the 

system. Faults in PE are sustained by switching in one of the unused PE. Faults in 

the interconnection network are tolerated either by selecting alternate paths, if 

available, or by choosing a subset of N active PE such that the faulty paths are not 

used. The system is considered to have failed when it becomes impossible to find a 

subset of N fault-free processors with the desired level of communication capability 

among themselves. This technique also provides tolerance to switch-failures in the 

first and last stages of the network. 

5. Conclusion 

In this paper, we examined some of the fault-tolerance and reliability issues in the 

design and analysis of multistage interconnection networks for multiprocessors. 

Some of the commonly-used techniques for providing fault-tolerance in these 

networks were reviewed. Useful measures for evaluation of the reliability of the 

networks were presented. These techniques are valuable in the design and analysis 

of reliable multistage interconnection networks. 
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Reliability and fault-tolerant issues of multiprocessor and 
multicomputer systems 
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Abstract. This paper deals with the reliability and fault-tolerance 
evaluation of multiprocessor and multicomputer architectures consider¬ 
ing the degradation of both computation and communication capabili¬ 
ties. Reliability and performance availability (pa) are used to charac¬ 
terize and evaluate the dependability of these architectures. Bandwidth 
availability (BA) and computation-communication availability (CCA) are 
used to quantify the PA of multiprocessors and multicomputers, 
respectively. These measures are based on the system requirements for 
the parallel execution of a task (job) that consists of a few subtasks. We 
present two different dependability models for multiprocessors, namely: 
a bus-oriented model (bom) and a switch-oriented model (SOM). The 
BOM is an analytical model and is used to evaluate multiprocessors with 
crossbar and multiple-bus interconnections. The SOM uses simulation to 
analyze all types of multiprocessors. A simulation technique is also 
presented to compute the reliability and CCA of various types of 
multicomputer networks suggested in the literature. 

Keywords. Reliability modelling; multiprocessors; multicomputer; 
bandwidth availability; computation-communication availability; cross¬ 
bar; graceful degradation; multistage interconnection network; multiple 
bus. 

1. Introduction 

In recent years, parallel/distributed computing is becoming increasingly popular 
because of its application in diverse areas such as weather forecasting, image 
processing, space flight control, and industrial process control. Parallel/distributed 
computers are broadly divided into two categories depending on the type of 
interconnection topology. These are called multiprocessor systems and multi¬ 
computer systems. 

A list of symbols is given at the end of the paper. 129 
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A multiprocessor system consists of a number of processing elements (PE) 

connected to a number of memory modules (mm) through an interconnection 
network. Three types of interconnection topologies, namely: crossbar (Wulf & Bell 
1972), multistage interconnection networks (min) (Feng 1981), and multiple-bus 
(Lang et al 1982; Marsan & Gerla 1982) have been proposed in the literature for 
multiprocessor organizations. Performance evaluations of these interconnection 
networks (in) have been reported extensively using analytic and simulation models 
(Bhandarkar 1975; Kruskal & Snir 1983; Mudge et al 1984). Most of the models use 
bandwidth (bw) as a performance metric, where BW is defined as the average 
number of MM remaining busy in a cycle. The BW of a multiprocessor depends on 
the type of the in. 

In contrast to multiprocessor organizations, each processing node in a 
multicomputer system has its own local memory. The inter-processor communica¬ 
tion in these systems is achieved by a message/packet switching protocol. Several 
structures such as loops, trees, full connection, and hypercube have been proposed 
(Anderson & Jenson 1975; Bhuyan & Agrawal 1984; Reed & Schwetman 1983; 

Wittie 1981) to interconnect a network of computers. The performance of a 
multicomputer is usually defined in terms of the average distance between the 
nodes and the average traffic density on a link. 

The performance accomplishments expected from these parallel machines are 
two-fold. First, high computing power should be provided by exploiting parallel¬ 
ism. Second, these architectures should be highly reliable because of the critical 
applications in which they are used. Failures of these machines will not only result 
in financial loss but can also affect life and society depending on the application. 
Therefore, these systems should be designed to provide a high degree of 
fault-tolerance. These two requirements are contradictory in a sense that high 
computing power is achieved by designing increasingly complex systems which in 
turn reduce system reliability. 

The performance analyses of the parallel systems outlined above, implicitly 
assume that the components of a system are fault-free. For example, the BW of an 
MIN or the average distance of a ring network is computed assuming that all the 
elements of the system are working perfectly. These results give the so called 
“ideal" performance of a system. However, in a real situation the components of a 
system fail at random depending on their failure rates. At the system level, a 
multiprocessor or multicomputer consists of two subsystems. One subsystem is the 
computation facility which is provided by processors (nodes) and memories. The 
second subsystem is the communication network, used to support interprocessor 
communication. The failure of a processor (node), or a memory unit reduces the 
hardware resources available on the system. The failure of the interconnection 
switches or links degrades the communication capability of the network. All these 
faults affect the dependability (Laprie & Costes 1982) and the performance of the 
system to varying degrees. The need for high reliability enforces design of a system 
that does not fail due to the failure of a single component. Rather, the system 
should be able to detect any faulty element and should have the ability to 
reconfigure and operate in a degraded mode. Hence, graceful degradation should 
be an inherent attribute of a system to improve fault-tolerance. 

Since the early days of fault-tolerant computing, reliability modelling has been 
used as a major tool to study the effectiveness of fault-tolerant computers. In 
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particular, system reliability is of primary concern for many critical applications. 

But, reliability is a probabilistic estimate and only gives the operational status of 

the system at any time t. Reliability does not give any idea about the available 

computing power of a system at that instant. Higher performance being the basic 

objective of the parallel architectures, a combination of performance and reliability 

measure is more appropriate for these systems. Therefore, a performance-related 

reliability attribute is also required in addition to the reliability assessment to 

properly evaluate different multiprocessor and multicomputer systems. 

This paper deals with the reliability and fault-tolerance evaluation of multi¬ 

processor and multicomputer architectures in reference to their behaviour with 

graceful degradation. It differs from most of the work in this area in that here we 

have modelled the degradation of the communication network and have 

incorporated it in the overall system dependability. Two dependability measures, 

known as reliability and performance availability (pa), are used to characterize and 

evaluate these architectures. Reliability of a system at time t is defined as the 

probability that the system is operational during the interval (0, t), provided it was 

up at time t = 0 (Trivedi 1982). We define performance availability, PA, as a 

generic performance related reliability measure for both multiprocessors and 

multicomputers. It is the expected amount of performance available on the system 

at time t. 

The above two measures are based on the system requirements for the 

concurrent execution of a task (job) that consists of a few subtasks. Hence, we use 
“task based reliability” (Ingle & Siewiorek 1977), which is defined as the probability 

that the system has at least the minimum number of resources working at time t for 

the execution of a task (job) and there exists a valid interconnection between the 

resources. The justification for using task based reliability in the distributed 

computing domain is that because these systems are meant for the parallel 

execution of the subtasks, there should be at least the minimum number of 

resources available in the system as required by the task. Using task requirement as 

the basic measure to define the working state of a system, we write PA of a system 
at time t, PAs(t), as 

PAv(0 = X P,(0-CA,(0. (1) 
/•= 1 

where P,(/) is the probability that the system is in an operating state /, CA,(r) is the 

computation availability of the system in state /, and x is the number of maximum 

possible working states. An appropriate value for the term CA(r) again depends on 

the type of the parallel system. We defer the quantification of PAs(t) to later 

sections, where we discuss multiprocessors and multicomputers separately. 

The paper is organized as follows. In §2, a brief introduction to various 
multiprocessors and multicomputers is presented. Section 3 summarizes most of the 

research efforts related to this work. In §4, we present two different models for the 

reliability and PA^(r) evaluation of multiprocessors. These are called bus-oriented 

model (BOM) and switch-oriented model (SOM). In §5, reliability and PA of 

multicomputer networks are discussed. Section 6 summarizes the various results of 

this paper. 
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2. Parallel system representation 

In this section, an outline of various multiprocessor and multicomputer 

architectures is presented. 

2.1 Multiprocessor systems 

As mentioned in the introduction, multiprocessor architectures can be divided into 

three categories based on the type of the IN. 

Figure 1 shows M * N crossbar architecture with M PE and N MM. There are 
M * N cross point switches providing a unique path from each processor to each 
memory. This architecture allows all possible one-to-one and simultaneous 
mappings between the PE and the MM provided the requests are distinct. The only 
possible interference in this architecture is the memory access conflicts, i.e., when 
more than one processor requests service from the same memory unit. Because the 
connection cost of a network is proportional to the number of switching elements 
(se), the crossbar interconnection is not suitable for implementing large systems. 

MIN is a cost-effective communication structure to interconnect a large number 
of PE and MM. A number of MIN have been proposed to design the multiprocessors 
(Wu & Feng 1984). Most of the MIN use 2*2 switching elements (SE). The min are 
functionally equivalent but they differ in permutation capabilities depending on the 
type of interconnection used between two stages of switches. An N * N multi¬ 
processor system using MIN is connected through (Af/2). log2yV SE. There are log2Ar 
stages of (N/2) SE per stage in the network, thereby justifying the name multistage. 
The MIN are generally blocking networks which do not allow all possible 
permutations. Both link conflicts and memory access conflicts are possible in these 
networks. However, the cost of the MIN being 0(N. log2Ar), it is attractive for large 
systems. A specific type of MIN, called Omega network (Lawrie 1975) is shown in 
figure 2 for N = 16. 

Figure 3 shows an M * N * B multiple-bus architecture having M processors, N 

MM, and B buses, where B < min (A/, N). A bus is connected to all the PE and to 

Figure 1. An M*N multiprocessor with 

crossbar interconnection. 
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Figure 3. An M*N*B multiple-bus multi¬ 
processor. 
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all the MM. The arbiter cyclically allocates a bus to a memory that has an 
outstanding request. Thus, B PE can be connected to B MM at a time. The cost of 
this structure is 0[Z?(M + yV)]. This architecture has the simplicity of a shared bus, 
but it can give better performance and fault-tolerance with increase in the number 
of buses. 

2.2 Multicomputer systems 

Several structures such as loops, trees, mesh, and hypercube have been proposed in 
the literature (Anderson & Jenson 1975; Bhuyan & Agrawal 1984; Reed & 
Schwetman 1983; Wittie 1981) to interconnect a large network of computers. Some 
of the architectures are shown in figure 4. Each processing node in a multicomputer 
system has its own local memory. Degree and diameter are the two common terms 
used to describe multicomputer networks. The degree of a node is the number of 
links per node in the network. The diameter d of a network is defined as d = max 
(dj j \ 1 < /, j < N), where dt j is the distance between node / and node j along the 
shortest path and N is the total number of nodes in the structure. The performance 
of the multicomputer is usually defined in terms of the average distance between 
the nodes and the average traffic density on a link. These measures depend on the 
diameter and the degree of a node. The diameter of a network is usually inversely 
proportional to the degree of a node. The basic motivation in the study of the 
multicomputer network has been to design a cost effective network that has a low 
degree as well as a small diameter. The cost of various multicomputers with the 
same number of nodes is defined in terms of the number of links in the network. 

completely 
connected(FC) 

CKHJ 

0—0—0 

Q-(>A) 
mesh 

Figure 4. Some multicomputer 

organizations. 
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3. Related work 

3.1 Reliability/availability models 

Although there has been ongoing research on the fault-tolerant aspects of 
computing systems, most of the work is confined to uniprocessor systems or to 
multiprocessor systems where the IN is assumed perfect (Beaudry 1978; Meyer 
1980; Ng & Avizienis 1977). The reliability of the communication network is 
difficult to model and can lead to NP-complete problems (Ball 1980). As a result, 
the IN reliability has usually been avoided while computing the system reliability. 
Nevertheless, the reliability of the parallel systems has been studied under two 
different approaches, namely: terminal reliability, and task based reliability. 

Terminal reliability is defined as the probability that at least one communication 
path exists between a pair of nodes. Raghavendra has analyzed the terminal 
reliability of a type of MIN that provides alternate paths between each input and 
output pair (Raghavendra & Parker 1984). Grnarov et al (1979) have presented an 
efficient algorithm for computing the terminal reliability of computer communica¬ 
tion networks. The algorithm is based on symbolic reliability analysis. Two good 
tutorial examples on the multicomputer reliability are by Wilkov (1972) and Frank 
& Frisch (1970). These authors have applied a graph theoretic approach to estimate 
terminal reliability. The calculation of the terminal reliability is confined only 
between the source and sink nodes. Therefore, we feel that this measure is an 
oversimplified estimate for parallel systems. Terminal reliability is more appropri¬ 
ate for communication networks but not for computationally intensive systems. 
Grnarov & Gerla (1981) have proposed multiterminal reliability as another 
parameter for distributed computer systems. They compute the probability of 
successful communication between a set of known nodes for the execution of a 
task. 

Reliability models based on task requirements are more general than the 
previous models because the source and destination nodes are not explicitly 
specified in this case. The system remains operational as long as a task can be 
executed with the available resources. This allows incorporation of graceful 
degradation into the system to improve fault-tolerance. Task based reliability 
evaluation of C. mmp and Cm* architectures were presented by Ingle & Siewiorek 
(1977) by considering processor and memory failures. The degradation of the IN 

was not modelled in this analysis. Hwang & Chang (1982) have analysed the 
reliability of crossbar, shared bus and multiport memory structures using a graph 
model. Closed form reliability expressions were derived via combinatorial path 
enumeration on the probabilistic graph representation of a multiprocessor system. 
Two other reliability models that can fit into task based reliability analysis of 
multicomputer networks are known as the survivability index (Merwin & Mirhakak 
1980) and the team approach (Hilborn 1980). Survivability is measured as the 
probability of finding a connected network with all nodes or a percentage of nodes 
after random node and link failures. The survivability index is defined as the 
average number of programs that remain operational after these failures. The team 
approach (Hilborn 1980) depends both on the existence and communication 
connectivity between the team members for full performance. Recently, a 
probabilistic model for the availability analysis of distributed systems was given by 
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Tsuchiya (1985), where the failure of the communication network is avoided for 

simplicity. 
Research efforts to compute the system reliability with automated program 

packages have also achieved much attention in recent years. Two of these programs 
that use Markov models are ARIES (Ng & Avizienis 1980) and CARE III (Stiffler et al 

1979). ARIES (Automated Reliability Interactive Estimation System) can compute 
transient and steady state reliabilities for both repairable and non-repairable 
systems. CARE III, on the other hand, uses a time-varying Markov model for 
non-repairable ultrareliable systems with a short mission time. Here, the failure 
distribution is assumed to be Weighbull. These packages do not compute 
performance-related reliability attributes. 

3.2 Performance-related dependability models 

Performance-related dependability measures are relatively new compared to 
classical reliability theory. A major contribution in this area is by Beaudry (1978). 
She has defined a few performance-related measures like computation reliability, 
computation availability, applicable to degradable multiprocessor systems. These 
measures can be applied to both repairable and non-repairable systems. Meyer 
(1980) has introduced a unified parameter, known as performability, to deal with 
both continuous and discrete performance variables. The model finds the 
probability of successful operation over a specified time T at various accomplish¬ 
ment levels. Gay & Ketelson (1979) have used a Markov model to find the 
variation in system workload and capacity for degradable multiprocessors. An 
interactive graphic program package, called PEREL, has been developed by 
Huslende (1981) to evaluate the performance and reliability of multiprocessor 
systems. The model accepts the performance and reliability requirements specified 
by the user. A few other models have been suggested by different authors to 
capture the dependability of degradable systems (Chou & Abraham 1980; Losq 
1977). But, as mentioned above, the degradation in the IN has been neglected so 
that closed form solutions can be obtained. Recently, Arlat & Laprie (1983) have 
presented a Markov model for performance-related dependability evaluation of 
repairable multiprocessor architectures using an Omega interconnection. How¬ 
ever, they use a number of simplifying assumptions so that a Markovian analysis 
can be done. Another difficulty with this model is that the state transition diagram 
becomes unmanageable for non-repairable systems. 

4. Multiprocessor fault-tolerance 

We present in this section, two different models for computing reliability and 
performance availability (pa) of multiprocessor architectures using crossbar, MIN 

and multiple-bus interconnections. The first model, known as the bus-oriented 
model (bom), is applicable to systems where the IN can be represented by a set of 
buses. The novelty of this model is that because the bus connections are 
symmetrical, closed-form analytical expressions can be derived. However, this 
mode’ cannot accommodate MIN because the connecting elements in the MIN are 
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SE, not buses. Therefore, a second model, known as switch-oriented model (SOM), 

of the multiprocessors is also developed. The SOM represents the IN more 
accurately compared to the BOM. Moreover, the SOM will enable us to compare the 
fault-tolerance characteristics of the three types of architectures on a uniform basis. 

At this point we quantify the (pa) attribute of the multiprocessors used in this 
paper. Bandwidth (bw) has been used as a common measure for all types of IN. For 
a synchronous system, BW is defined as the average number of processors or 
memory modules (mm) remaining busy in a cycle. We combine reliability and BW to 
define “bandwidth availability” (ba) as the PA measure for all multiprocessor 
networks. BAs(t) of a system at time t is defined as the expected amount of BW 

available on the system at that time. 

4.1 Bus-oriented model {BOM) 

This model is applicable to crossbar and multiple-bus systems. Here, we consider 
the PE, MM, and buses as the basic components of a multiprocessor. This model 
does not include the failure of the interface switches assuming that these failures 
are included in the bus failure rate. Effect of the failures of the PE, MM and buses on 
overall system reliability and BA is captured by this model. 

The multiple-bus architecture is depicted in figure 3. The crossbar system, of 
figure 1, is modelled as a bus oriented network as shown in figure 5. These are N 

buses; a bus is connected to all the processors, but to only one memory. The cost of 
an N *N *B multiple-bus connection with N/2 buses is approximately the same as 
that of an N *N crossbar (Lang et al 1982). 

4.1a Reliability analysis: The multiple-bus structure of figure 3 is divided into three 
independent submodules; processors, buses and memories (Das & Bhuyan 1985a). 
The system reliability is obtained by considering the series reliability of these 
submodules. We assume that the elements of a submodule are all independent, 
identical, and have the same failure rate. The failures are assumed to be 
exponentially distributed for simplicity. Thus, we define Ap, Am, and \b as the 
failure rate of a processor, a memory and a bus, respectively. Then, Rp(t) = e~xp', 

Rm(t) = e~xmr, Rb(t) = e~xbr give the corresponding reliabilities. If a task needs 
at least I processors, J memories for execution and a bus for communication, the 
reliability of the multiple-bus system Rsm(t) is given by 

1 

2 

N 

Figure 5. An M * N crossbar multiprocessor. 
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RsJt) = RJt) £ c"-' (£) [^W]' [1 -RP(t)]M-‘ 

x X ^ J [/?m(0]' [1 - Rm(t)]N-! 

x I ^"‘(*) [**«]*[!-**«]*-*, (2) 

where C^, Cm, Q, are the coverage factors for the processor, memory, and bus, 
respectively, and Ra(t) is the reliability of the arbiter. Coverage (Arnold 1973) is 
defined as the probability that the system recovers successfully given that there was 
a failure. 

In case of the crossbar architecture, shown in figure 5, as a bus is connected to 
only one memory, the failure of a bus or a memory reduces the size of the crossbar 
to Hence, the reliability of a memory module is expressed as: 
Re(t) = Rm(t) • Rb(t) = e~ V, with an equivalent failure rate, \e = (Am 4- Xb). The 
reliability of the crossbar system Rsc{t) with minimum I processors and J memories 
active is then 

Rscit) = RJt) X cy-‘ [/?„(/)]' [1 -Rpit)]"-1 

X £ C?~i (N. ) [/?e(0]; [1 - (3) 

where Ce is the coverage of a memory-bus combination. 
Figure 6 shows the comparison of reliability between a multiple-bus and a 

crossbar system for the same processor and memory requirements. The reliability 
of the arbiter and the coverage parameters are all assumed to be unity in this figure. 
The original configurations are a 16*16*8 multiple-bus system, both having 
approximately the same cost. The multiple-bus has a better reliability than the 

Figure 6. Reliability of a 16 * 16 * 8 

multiple-bus and a 16 * 16 crossbar 

for a task requiring / processors 

and I memories. (-multiple-bus; 

- crossbar; \p = \m = 
0-0001; = 0-00005; Ra(t) = 
Cp = Cm = Cb= 1.) 
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crossbar because the buses are independent in the former and only one bus may be 
sufficient for keeping the system operational. However, in a crossbar the 
stipulation of the memory-bus configuration is quite rigid. Also, it may be observed 
in figure 6 that the reliability of the multiprocessors increases dramatically if a task 
can be executed with fewer processors and memory units allowing graceful 
degradation. 

4.1b Bandwidth availability (BA) analysis: BAs(t), as defined earlier, gives the 
expected amount of BW available on the system at time t. Hence, to compute the 
BAs(t) of a reconfigured system having i processors, j memories and an 
interconnection between them, we need the BW of this /*/ system, for i < M, 

j < N, employing either a multiple-bus or a crossbar connection. 
BW analysis of synchronous multiple-bus and crossbar networks are generally 

based on two types of memory reference principles. The first one is called the 
uniform memory reference (umr), where a processor requests any one of the 
common MM with equal probability. The second one is called the favourite memory 
analysis (FMR) where a processor requests a particular memory more frequently 
than other processors. UMR and FMR can be combined and represented by a single 
parameter m. For m — l/N, the analysis reduces to UMR and for m > 1/A, the 
analysis for FMR is obtained. BW analysis using this parameter m for crossbar and 
multiple-bus interconnections are reported in Bhuyan (1985) and Das & Bhuyan 
(1985). For simplicity, we will use the BW expressions for UMR in this paper. The 
expressions are based on synchronous operation, independent request generation, 
and request rejection assumptions. 

Let us assume that a system has i PE and j MM at any time t. Defining p as the 
probability with which a processor generates a request in a cycle and m = l/N, the 
BW of the crossbar is (Bhuyan 1985) 

BW,, =/'{l-(l-/>//)'}. (4) 

We can write the probability of referencing exactly y memories as 

P(y) = (L{i-(i-MTF-{(i-p//)i}/-r- (5) 

As an i *j * k multiple-bus can have at best k connections per cycle, the BW of the 
architecture is given by (Das & Bhuyan 1985a) 

Bw,y* = j. (l — (l — p/y)'} — X (y-k)-p(y). (6) 
y — k + 1 

The first term in (6) is the BW of an i * j crossbar and the second term gives the 
degradation in performance due to bus insufficiency. 

Now the BA of the multiple-bus system, BA5W(^) at time t is expressed as 

m n B 

BA sm(t)= III BW,j*, (7) 
/ = / j = J k= 1 

where Pijk(t) is the probability that the system has i PE, j MM and k buses at time t 
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for I < i < M, J < j < TV, and 1 < k < BW^ is the BW of the system at that 
instant and is given by (6). The probability of a working state (/, j, k) at any time t 
is given by (Das & Bhuyan 1985a) 

P»jk(t) = (f) Cp~‘(Rp(t)y (1 - Rp(t))M~' 

x (Nj) C%-P(Rm(t)y (1 -Rm(t))N~J 

x [Bk)cBb-k {R„{t))k (\-Rb{t))B~k- (8) 

It should be observed that we add the expected BW of all the working states to get 
BA. The BA of the crossbar architecture BAsc(t), is similarly given by 

M N 

BAsc(f) = I X Py(0-BW,y(0, (9) 
i = I j=J 

where Pyit) is the probability that the system has i processors and j memories 
working at time t. Mathematically, Pij(t) is expressed as 

pm = 
M 

cy-'[RP(t)Y [1 -A(0] 
M-i 

4 

In figure 7, we present the variation of the BA with time for different processor 
and memory requirements of a task. We use B = N/2 for the multiple-bus because 

Figure 7.' Bandwidth availability 

of a 16* 16*8 multiple-bus and a 

16* 16 crossbar for a task requir¬ 

ing / processors and I memories. 

(-multiple-bus;-crossbar; 

A p = km = 0-0001; A* = 0-00005; 

Raif) = Cp = Cm = Cb = 1; p = 

1-0, m = \/N). 
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the initial performance of the multiple-bus is then close to that of a crossbar. The 
BW is calculated for a probability of request equal to 1. It is seen that even though 
the crossbar has a better BA at the beginning, mainly due to its better performance, 
the BA of the multiple-bus exceeds that of the crossbar after a certain time. This 
time can be reduced if we use more buses. 

4.2 Switch-oriented model (SOM) 

In this model we shall consider the PE, MM and switching elements (SE) as the basic 
components of a multiprocessor. The SE are connected in a specific pattern to form 
the IN. Under fault-free condition the IN allows a rich subset of one-to-one and 
simultaneous mappings of the PE to MM and the system satisfies the dynamic full 
accessibility (dfa) property (Agrawal & Leu 1985; Shen & Hayes 1980). DFA 

means that any input port can be connected to any output port. 
The multiprocessors, using SE for crossbar, MIN and multiple-bus IN, are shown 

in figures 1, 2, and 8, respectively. Again, we are using a specific type of MIN, called 
Omega network (Lawrie 1975) in this work. However, the same model can also be 
applied to other types of MIN. The stage number and position of the switch in that 
stage are shown within bracket for each switch in figure 2. Each processor or' 
memory of the multiple-bus interconnection, depicted in figure 8, is connected 
through B interface switches to the global buses. The total number of interface 
switches is B(M + N). The failure of an interface switch destroys only one of the B 
alternate paths from a PE to any MM. A processor or memory is completely isolated 
from the system only when all its B switches are faulty. 

The connecting capacity of the switches being very unsymmetrical, an analytical 
modelling for SOM seems extremely difficult. We, therefore, use simulation 
techniques to evaluate the reliability and PA of the three types of architectures (Das 
& Bhuyan 1985b). The bandwidth availability (ba) analysis needs the BW of the 
degraded system at any time t. Analytical solutions for the BW of a randomly 
truncated multiprocessor using MIN or multiple-bus structure are extremely 
difficult. We determine the BW of the two systems by simulation and use these 
results to find the BA of the corresponding multiprocessors. The analytical solution 
for the BW of the truncated crossbar connection is fairly straightforward. 

Figure 8. An M * N * B multiple-bus 

multiprocessor. 
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4.2a Reliability modelling: The task-based reliability simulation is based on the 

following assumptions: 
(1) We assume that all the PE, MM and SE are homogeneous and have identical 
exponential failure distributions. Thus, we define Xp, Am, Xs as the failure rate of a 

PE, MM and SE, respectively. 
(2) The probability of a bus failure in case of a multiple-bus arphitecture and the 
probability of a link failure for crossbar or MIN are negligible compared to the 

probability of a switch failure. 
(3) The central controllers of the multiprocessor systems are highly fault-tolerant 
and do not fail. However, this assumption can be relaxed by taking an appropriate 
failure rate for the controller and by switching off the system whenever the 

controller fails. 
All the three architectures initially possess full connectivity which is represented 

by a reachability matrix R (Agrawal & Leu 1985). All the elements of the matrix 
are T indicating that there is a path from any input to any output. A ‘O’ in any 
position R(i, j) represents that there is no path from processor i to memory j. 
Whenever a processor i fails, all the entries in the ith row become ‘OVand none of 
the memories is accessed by that processor. The system in fact reddces from an 
M * N to an (M— 1) * N structure. Similarly, failure of an MM j reduces an M * N 
structure to an M *(A— 1) and the y’th column entries become 0. The failure of an 
SE destroys the connection between a few input and output ports, thereby making 
the corresponding elements of the reachability matrix ‘O’. 

We use multiple independent repetition techniques to determine the reliability of 
a system at time t. It is evident that the initial R matrix, providing full connectivity 
among M PE and N MM, has a random number of ‘O’ entries due to the failure of 
processors, MM and SE with progress of time. Given such a matrix with 1 and 0 as 
elements, the aim is to find out whether the system is operational at that time. The 
next part of the program determines whether there exists a fully connected 
submatrix R' such that the number of PE and MM satisfy the minimum resource 
requirements. 

This can be obtained by keeping a count of the number of active memories 
connected to each PE and a group (set) representing those memories. The following 
two examples give an elaborate explanation of different situations. 

Example 1 - Let us assume that PE 15 and SE 8 have failed at any time in figure 
2. The R matrix is then given in figure 9. We can get two subsystems (11 * 16) and 
(15 * 8) from this matrix. If the minimum resource requirements are satisfied by any 
of the two subsystems, then the multiprocessor remains operational and is reliable. 

The necessity of using memory groups to represent the MM connected to each PE 

will be evident from the next example. 

Example 2 - Let us assume that switches 8, 11, 12 and 15 have failed in the 
multiprocessor, represented by figure 2. The R matrix for the system is shown in 
figure 10. If we keep an account of only the number of MM connected to each PE, 

we will get a (16 * 8) subsystem since each processor has access to 8 memories. But 
actually there are two disjoint (8 * 8) groups embedded in the R matrix of figure 10. 
The PE {0, 2, 4, 6, 8, 10, 12, 14} have access to MM {8. .15} and PE (1, 3, 5, 7, 9, 11, 
13, 15} have memory connections to {0. .7}. Two PE belong to the same group only 
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Figure 9. Reachability matrix 
after processor 15 and SE 8 have 

failed. 

if their memory connections are the same. This information helps us to derive two 
(8 * 8) subsystems from figure 10. 

4.2b Bandwidth availability computation: The analytical models proposed in the 
literature for the BW calculation of MIN and multiple-bus interconnections are not 
valid for randomly truncated networks. The simulation technique used here is based 
on the fact that only the subset of processors and memories that represent a valid 
multiprocessor (satisfying the DFA property) after failures, contributes to the 

performance at time t. Even if some other PE have access to the selected memory 
group they should not generate requests for those memories. It is assumed that the 

NT! -> 
PE 
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1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
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1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 Figure 10. Reacha 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 after switches 8, 11, 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 have failed. 
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central controller decides about the configuration of a valid multiprocessor and 
disconnects the rest of the processors and memories from the system. We have not 
considered multiprogramming in this model. However, if we allow multiple jobs of 
the same type to run, we can compute the BA by adding the BA of all the subsets 
that satisfy the task requirement. 

We have again assumed a synchronous multiprocessor environment with 
independent request generation and rejection of unsuccessful requests. Also, we 
have used a uniform memory reference for computing the BW. Any general 
reference can be incorporated in the simulation without difficulty. We use a 
parameter p as the probability with which a processor generates a request in every 
cycle. 

The BW of a crossbar for any arbitrary number of PE and MM can be obtained 
from (4). 

The BW model for the Omega network generates the address bits of the 
destination memory for a valid processor and the routing is done through log2A^ 
switches. The selection process of a valid multiprocessor assures that the set of 
switches that are necessary for routing the request in the system are perfect. 
Therefore, the BW of the selected system is computed without checking the 
individual switch conditions in the IN. 

The situation for the multiple-bus is different in the sense that even if we have 
selected a valid multiprocessor, the number of paths available for different 
processor-memory pairs can vary from 1 to B. So, the central controller after 
receiving a request for an idle memory from a processor, checks for common 
interface switches on the corresponding process-memory pair and grants a bus 
accordingly. That means if processor interface switch i and memory interface switch 
i are perfect, then bus i is selected. 

4.2c Simulation results: The reliabilities of a 16 * 16 multiprocessor with crossbar, 
Omega and multiple-bus interconnections were simulated for various task 
requirements. Figure 11 shows the variation of reliability with time for the three 

Figure 11. Reliability of a 

16*16*8 multiple-bus and a 

16*16 crossbar and Omega 

systems for a task requiring I pro¬ 

cessors and I memories and with¬ 

out repair. (—- multiple-bus; 

-crossbar;-Omega; 

—x—x—x 2-replicated Omega; 

A,, = 0-000202, A,„ = 0-000224; 

Av (crossbar, multiple-bus) = 

0-00000067; A^ (Omega) = 

0-0000019; coverage = 1-0.) 
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types of architectures without repair. The failure rates of a PE and an MM with 
associated circuitry are taken as 202 and 224 per 106 hours, respectively. These 
failure rates are the same as those considered for C.mmp (Ingle & Siewiorek 
1977). Any change of these values will affect all the systems equally. The SE failure 
rates are Xs = 0-67 for crossbar or multiple-bus and \s = 1-9 for MIN (Das 1986). 
These switch failures are determined from the MIL-HDBK-217B reliability model for 
MOS IC (Siewiorek & Swartz 1982) after some preliminary designs of the switches. 
However, these failure rates are input to the simulator, so that results can be 
obtained for other designs. Based on these switch failure rates the total IN failure 
rate for the crossbar and multiple-bus is 17T5 in 106 hours and for the Omega 
connection is 60-8 in 106 hours. It is observed that the crossbar and Omega 
structure reliabilities are very close for I = / = 8 and 12. Even though the failure 
rate of the Omega interconnection is about one-third of that of the crossbar, the 
latter has a slightly better reliability. This is because the failure of an SE in an MIN 
disconnects a group of PE and MM, whereas for the crossbar an SE failure 
disconnects only one PE and MM. For the case when all the 16 PE and MM are 
necessary, the reliability of the Omega structure is slightly better than that of the 
crossbar. In this case both the crossbar and Omega architectures need all the 
elements to work perfectly and the system reliability becomes a series reliability of 
the PE, MM and the IN. The total IN failure rate of the MIN being less than that of the 
crossbar, the reliability of a multiprocessor with MIN is better. However, this 
improvement is very small since the total failure rate of the PE and MM is very high 
compared to the IN failure rate and the system fails mostly due to PE or MM faults. 
So, we have shown the curve only for the Omega architecture for I = J = 16. The 
reliability of the multiple-bus in this case is slightly better than the Omega. With 
degradation, the reliability of the multiple-bus is much better because of the 
available alternate paths. 

Figure 12 shows the variation of BA with time for the multiprocessors without 
repair. The failure rates are the same, as used in the reliability comparison in figure 

Figure 12. Bandwidth availability 

of a 16* 16*8 multiple-bus and a 
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11. The BW is computed for a probability of request equal to 1. We have used 
B - N/2 for the multiple-bus to keep its cost and performance close to that of the 

crossbar. The initial BW of the crossbar being the highest among the three archi¬ 
tectures, it has a better BA in the beginning. However, after some time the BA of 
the multiple-bus exceeds that of the crossbar. The BA of the Omega structure is the 
minimum. 

All the above results show that MIN structure has the lowest reliability and BA. 

On the other hand, it has the minimum cost because of only (N/2) \og2N SE used for 
the IN. If the performance and fault-tolerance issues are critical, then we can use 
replica led MIN (Kruskal 1983) to provide alternate paths between a PE and an MM. 

Here, we study a 2-replicated Omega interconnection that consists of two copies of 
the Omega IN in parallel. We assume that a PE sends its requests randomly to one of 
the two copies when there are two alternate paths. The reliability and BA curves for 
the 2-Omega without repair are also plotted in figure 11 and figure 12 for I = 8. It 
can be observed that, if required, the Omega connection has the potential for 
providing better dependability at a lower cost compared to the other two 
architectures. 

5. Multicomputer fault-tolerance 

A few multicomputer networks were described earlier with examples given in 
figure 4. Each structure possesses some unique advantages and disadvantages 
compared to another. For example, a bi-directional single loop (ring) structure has 
only two I/O ports per node, but the diameter (maximum number of hops between 
any two nodes along the shortest path) is N/2 in a system with N nodes. Any two 
non-adjacent faulty nodes or links disconnect the loop. On the other hand, a 
completely connected structure has (N- 1) I/O ports per node, and the distance 
between any two nodes is unity. The structure is highly fault-tolerant, but due to its 
high cost the structure is unsuitable for systems with a large number of nodes. The 
cost and performance of other structures such as the chordal ring, mesh, and 
hypercube, lie between these two extremes (Wittie 1981; Bhuyan & Agrawal 
1984). We develop a simulation model to compute the task-based reliability and 
computation and communication availability (CCA) of a multicomputer structure 
for multiple node and link failures. The model can be used to compare different 
multicomputer graphs. The CCA is used to quantify the performance availability, 
PAs(t), of a multicomputer system. 

5.1 Computation-communication availability (CCA) 

The computation capacity of a network is directly proportional to the number of 
operational nodes. The communication capacity of a network is usually measured 
in terms of the average delay of a message between a source and a destination. 
Under the usual assumption of uniform traffic generation, fixed routing etc. (Wittie 
1981;_Bhuyan Agrawal 1984), the delay of a multicomputer is proportional to 
1 - pd, where d is the average number of hops a message passes through in its route 
and p is the utilization factor. Here, p = y/pc, where y is throughput in 
messages/second, 1/ p is the average message length in bits/message and c is the 
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total capacity of the network in bits/second. When p approaches l/d, the delay 
approaches infinity corresponding to a saturation of ysat. Then ysat = puc/d truly 
represents the communication capacity of a network. Here /z being a constant and c 
being directly proportional to the number of links L, ysat = kx L/d for some 
constant kx. Although this is a good measure for the communication capability of 
the links, the number of nodes may be insufficient to handle that amount of traffic. 
In a network with N nodes, k2N messages can be generated or processed in unit 
time for some constant k2. Hence, the actual communication capability is 
min [kx(L/d), k2N]. With unit constants, we can safely assume min (L/d, N) as a 
figure of merit. A similar measure was considered for the performance comparison 
of various multicomputers (Reed & Schwetman 1983). 

The computation capability being proportional to N, we can define the 
computation communication capability of a network as N. min (N, L/d). The cost 
of a multicomputer system includes the cost of processors (nodes), links and I/O 

ports. If we start with the same number of nodes for all the structures, we can 
assume that the cost is proportional to the number of links L. Taking performance 
and cost into account, we define the computation-communication availability of the 

system [cca5(0] as 

CCA,(0 4l V - min (N„ L,ld,), (11) 
L i= 1 

where at time t, the network contains x disjoint segments with the ith segment 
having A, nodes, L, links and average distance dt. We will consider disjoint 
segments that have more than two connected nodes. Hence, 

* X 

Y Nj < N and T L, < L 
1=1 1=1 

for Nj > 2. Note from the above CCAs(t) expression that a completely connected 
structure will be node deficient whereas a loop structure will be link deficient. 

Computation-communication availability, as defined above, can be interpreted 
differently for different applications. If the multicomputer only executes tasks that 
need a minimum of I nodes, the CCA is obtained by summing over the disjoint sets 
that satisfy this minimum requirement. When 1 = 2, the availability is the same as 
that denoted by the equation above. On the other hand, for batch processing 
environments, where the multicomputer executes one task at a time, the CCA of the 
system will be the maximum of the available computation-communications over all 
the disjoint multicomputer sets. The task can then be executed on any set that has 
at least / connected nodes. If none of the disjoint sets has I nodes the CCA of the 
system is assumed to be zero. These availability models are called “task based CCA” 

models in this work in order to distinguish them from the absolute CCA whose 
equation was derived earlier. The model is capable of computing both the absolute 
and task based CCA of any multicomputer network. 

5.2 Simulation techniques 

We represent a multicomputer topology by an adjacency matrix A using graph 
theoretic notations. The matrix elements A [/,/] and A [/, /] are T if there is a link 
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between node i and node j. Otherwise A[i,j] = A [/, i] = 0. A nonfailed node 
i, 1 < i < N, is represented by making the diagonal element A[i,j] = 1. 

We use a reachability matrix R to show the graph connectivity. The matrix 
specifies whether or not there exists a path between two nodes which are not 
necessarily adjacent. The connectivity of any arbitrary graph can be obtained from 
its adjacency matrix using any standard algorithm (Tanenbaum 1981). It is evident 
that the initial reachability matrix R of any connected network has all its elements 
as T, indicating that there is a path from any node to any other node in the 
network. 

It is assumed that the failure of the nodes and the links are exponentially 
distributed over time. We assume homogeneity of all the nodes as well as of all the 
links to consider identical failure characteristics. Thus, we define A„ and A7 as the 
failure rates of a node and a link respectively. The node and link failure rates of a 
system are given by a A„ and b A7, where a and b are the number of active nodes and 
links taking part in computation/communication at any time t. A node is considered 
active if it is a member of a set of connected nodes and a link is active if it is used for 
communication between two active nodes. 

Whenever a node i fails, all the entries of the /th row as well as of the ith column 
of the A matrix are made ‘O’. Similarly, if the random failure of a link destroys the 
connection between nodes i and j, then the A [/,/] and A [/, /] elements of the A 
matrix are made ‘O’. The A matrix is thus modified depending on these two types of 
faults. This modification of the A matrix is reflected in the reachability matrix /?, 
which can be divided into various disjoint matrices having all the elements as T\ 
For example, the R matrix for the ring network of figure 13 is given in figure 14. It 
can be observed that the failure of node 4 and link 11 has resulted in two disjoint 
sets. In one of the sets the connected nodes are {1, 2, 3, 12, 13, 14, 15. 16} and the 
second connected set is (5, 6, 7, 8, 9, 10, 11}. These two sets are obtained from the 
R matrix of figure 14. 

The R matrix, obtained above, is searched exhaustively to obtain all the available 
submatrices. A submatrix is valid if it has all l’s so that it can represent a set of 
connected nodes (subgraph). The communication performance of a subgraph is 
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I l ll 0 0 0 0 0 0 0 0 1 1 1 1 
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i 1 ll 0 0 0 0 0 0 0 0 ,1 1 1 1 1 
Figure 14. Reachability matrix for figure 13 

then obtained from min (Nh Li/dj), where N) is the number of active nodes in 
subgraph i, Lt is the number of links that are used for communication and dt is the 
average distance a message has to travel in the zth subgraph. L, is obtained by 
counting all A [/, k] such that /, k e {subgraph /} and k >/+l. The average 
distance for arbitrary network is defined as 

Ni Ni 

I I 
7=1 k=1 

[Ni(N,- 1)], (12) 

where djk is the shortest distance from node j to node k. We use a shortest path 
algorithm to find d]k from any node to any other node in the subgraph and finally 
compute d. The adjacency matrix A is used to find the shortest path between nodes 
of a subgraph. We use multiple independent repetition techniques to determine the 
Rs(t) and CCAs(t). 

5.3 Simulation results 

The simulation model, discussed in §5.2, can be used to analyse any arbitrary 
network topology. It accepts the initial A matrix and the task requirement / as the 
input parameters and gives the reliability Rs(t) and computation-communication 
availability CCA^(/) variation with time. We present here the fault-tolerant 
capability of five types of multicomputer networks. These are: Full connection 
(FC), mesh, Hypercube (HC), binary tree and ring networks. The topologies are 
shown in figure 4. 

We have taken an initial configuration of 16 nodes (TV = 16) for all the networks. 
Most of our results are based on a node failure rate = 100 in 106 hours and link 
failure rate A7 = 20 in 106 hours. The link failure rate is taken as one-fifth of the 
processor failure rate and does include the interfaces at both ends of the link. We 
would like to emphasize that the model accepts these failure rates as inputs and 
hence is suitable for any other failure rates that can be determined for another 
implementation based on a component count and technology. 

Figure 15 shows the variation of reliability with time for all the above networks 
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Figure 15. Reliability variation with time for a rask requiring 12 processors and without 

repair. (A/; = 0-0001; X, - 0-00002; coverage = 1-0.) 

when a task needs a minimum of 12 processors and with no repair facility. The 
results indicate that the FC has the maximum reliability as expected. The reliability 
of the HC is very close to that of the FC even though it has only 32 links 

compared to 120 in the FC. This suggests that with a typical link failure rate of 20 in 
106 hours four alternate paths from each node are sufficient to provide reliability 
close to that of the complete connection. The (N— 1) links from each node in an FC 

are mostly required for better communication capability and do not increase the 
reliability linearly. The mesh connection is in the middle range of the reliability 
bounds. The tree and ring connections have almost similar poor reliability 
properties. 

Figure 16 shows the variation of CCAv(r) with time for the five topologies and 
with no repair. We use / = 2 to compute the absolute CCA. It is seen that the FC 

behaves worst in this case. Even though the FC has the maximum communication 

Figure 16. Absolute CCAS (/) variation 

with time and without repair. (A„ = 

0-0001; A/ = 0-00002; coverage = 1-0.) 
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performance (d = 1), its large number of links brings the performance/cost ratio 
down. The tree and the ring connections lie in the middle of the graph suggesting 
that they have a fair performance and low cost. They are suitable for applications 
where communication requirements are not stringent. The HC connection gives the 
best performance/cost behaviour. This is because it has an optimum number of 
links to provide reliability and CCA close to those of the FC. 

Table 1 shows the task based CCA comparison of five topologies. It can be 
observed that the CCAs(t) of the FC shows the least degradation with time. This is 
because of good fault-tolerance and communication attributes. The mesh connec¬ 
tion has the second-best CCA after FIC. Comparing the results of figure 16 with 
those of table 1 for I = 8, we observe that the CCA of the ring and tree structures 
increases dramatically for 1 = 2. Also, the CCA of the FC is almost the same for 
both 1 = 2 and 1 = 8. This implies that the FC has a low probability of having a 
subgraph with less than 8 nodes in 3000 hours. 

The effect of node failure rate and repair interval on system reliability has also 
been reported using this simulator (Bhuyan & Das 1986). 

Table 1. Task based CCA,.(r) without repair, A„ — 0-0001. — 0-00002, cove¬ 
rage = 1-0. 

Time FC HC Mesh Tree Ring 

0 2-13 7-50 6-00 4-36 ' 3-75 
300 2-02 6-85 5-43 3-70 3-09 
600 1 -90 6-17 4-87 3-16 2-58 
900 1-81 5-62 4-36 2-68 2-09 

1200 1-71 5-06 3-90 2-24 1-71 
1500 1-62 4-56 3-49 1-88 1-42 
1800 1-52 4-14 3-08 1-52 1 -14 
2100 1-43 3-76 2-74 1-26 0-93 
2400 l-35 3-40 2-44 1-05 0-77 
2700 1-28 3-07 2-16 0-86 0-61 
3000 1-20 2-75 1-89 0-70 0-48 

0 2-13 7-50 6-00 4-36 3-75 
300 2-00 6-85 5-39 3-58 2-99 
600 1*91 6-17 4-79 2-84 2-32 
900 1-80 5-67 4-30 2-23 1-72 

1200 1-68 5-09 3-74 1-72 1-30 
1500 1-57 4-54 3-30 1-34 0-96 
1800 1-41 4-03 2-83 1-01 0-69 
2100 1-30 3-50 2-40 0-79 0-48 
2400 1-18 3-00 2-01 0-58 0-35 
2700 1-04 2-54 1-66 0-43 0-24 
3000 0-88 2-19 1-35 0-31 0-17 

0 2-13 7-50 6-00 4-36 3-75 
300 1-29 4-60 3-69 2-49 2-31 
600 0-77 3-00 2-25 1-50 1-33 
900 0-50 1-75 1-39 0-89 0-79 

1200 0-31 1-21 0-96 0-46 0-46 
1500 0-18 0-70 0-52 0-28 0-27 
1800 0-11 0-48 0-35 0-18 0-18 
2100 0-06 0-28 0-19 0-11 0-10 
24(H) 0-04 0-14 0-10 0-05 0-06 
2700 002 0-09 0-06 0-04 0-04 
3(H)0 0-02 0-07 0-04 0-03 0-02 
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6. Conclusions 

In this paper we have developed various methodologies for reliability and PA 
evaluation of multiprocessor and multicomputer systems. Degradation of both 

computation and communication subsystems are modelled in this study. 
Two different models are presented for the multiprocessor systems. The 

bus-oriented model (bom) considers processors, memories and bus failures in 
crossbar and multiple-bus systems. Analytical expressions for computing reliability 
and BA are derived. The results indicate that the reliability of the multiple-bus is 
better than that of the crossbar. The BA of the multiple-bus also exceeds that of the 
crossbar after some time, depending on the number of buses and reference 
probabilities p and m. 

The second model, known as the switch-oriented model (SOM), is a more 
practical model as compared to the BOM. The model can be used to study the 
reliability and BA behavior of all types of multiprocessors. Typical results indicate 
that the multiple-bus structure performs the best because of the large number of 
alternate paths between the processors and memories. The MIN with a unique path 
between a source and destination has the minimum dependability. However, it has 
the potential to provide better fault-tolerance by using parallel MIN, while keeping 
the cost at a minimum relative to other configurations. 

Reliability and computation-communication availability (CCA) evaluation of 
multicomputer networks are presented using a simulation technique. Simulation is 
adopted because of the analytical intractability of the problem. The model is quite 
general and is applicable to all multicomputer graphs. The model accepts the 
adjacency matrix and task requirement as the inputs and produces Rs(t) and 

CCAv(r) as outputs. Typical results indicate that the hypercube structure 
performs the best from the reliability and availability standpoints. Its cost and 
performance were shown earlier (Bhuyan & Agrawal 1984) to be a reasonable 
balance between loop and completely connected structures. 

We have attempted to present some fault-tolerant attributes of parallel 
computers on a unified basis in this paper. We hope to extend these models to 
include transient and software failures and also to analyse the effect of all these 
failures on potential users of parallel/distributed systems. 

This research was conducted when Das was with the University of Southwestern 
Louisiana. It was supported in part by the NSF Grant No. DMC-8513041. 

List of symbols 

A adjacency matrix; 
B number of buses in a multiple-bus architecture; 
BAs(t) bandwidth availability of a multiprocessor at time t; 
BW bandwidth; 
C coverage; 

CCAs(t) computation-communication availability of a multicomputer at time t\ 
d average message distance; 
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/ minimum number of processors required to keep the system operational; 
J minimum number of memory units required to keep the system operational; 
L number of links in a multicomputer graph; 
m probability with which processor /(/>■) requests to memory module / (MM,); 
M number of processors; 
N number of MM in a multiprocessor/number of nodes in a multicomputer; 
p probability with which a processor generates a request in every cycle; 
Pij(t) probability that the system has / processors and j memories at time t\ 
Pjjk(t) probability that the system has i processors,j memories, and k buses at time /; 
R reachability matrix; 

R(t) reliability at time f; 
A failure rate; 
p utilization factor; 
y throughput. 
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Fast approximate methods for the reliability analysis of 
computer networks 

K K AGGARWAL 

Department of Electronics and Communication Engineering, Regional 
Engineering College, Kurukshetra 132 119, India 

Abstract. The complexity of computer communication networks has 
taken a dramatic upswing, following significant developments in 
electronic technology such as medium and large scale integrated circuits 
and microprocessors. Although components of a computer communica¬ 
tion network are broadly classified into software, hardware and 
communications, the most important problem is that of ensuring the 
reliable flow of information from source to destination. 

An important parameter in the analysis of these networks is to find 
the probability of obtaining a situation in which each node in the 
network communicates with all other remaining communication centres 
(nodes). This probability, termed as overall reliability, can be deter¬ 
mined using the concept of spanning trees. 

As the exact reliability evaluation becomes unmanageable even for a 
reasonable sized system, we present an approximate technique using 
clustering methods. It has been shown that when component reliability 
$2 0.9, the suggested technique gives results quite close to those 
obtained by exact methods with an enormous saving in computation 
time and memory usage. 

For still quicker reliability analysis while designing the topological 
configuration of real-time computer systems, an emph ’ :al form of the 
reliability index is proposed which serves as a fairly good indicator of 
overall reliability and can be easily incorporated in a design procedure, 
such as local search, to design maximally reliable computer communica¬ 
tion network. 

Keywords. Computer communications; overall reliability; clustering 
approach; reliability index. 

1. Introduction 

Computer networks are used, for the most part, in one of three ways: by people 
who require computational resources from a distance, by computers interacting 
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with one another, or by people interacting with one another. The complexity of 
computer communication networks has taken a dramatic upswing, following 
significant developments in electronic technology such as medium and large-scale 
integrated circuits and microprocessors (Frank & Frisch 1979). As computer 
networks are increasingly being put into use, the organizations they serve are 
becoming increasingly concerned about network reliability and availability as they 
realize the advantages of systems which seldom crash because of malfunctions over 
systems which run very rapidly between frequent crashes (Morgan et al 1977). 

Components of a computer-communication network are broadly classified into 
software, hardware and communications. The term, computer communications, 
implies a variety of user-to-computer or computer-to-computer interfaces realized 
by communication links. These range from various forms of teleprocessing (as in 
today’s data processing industry) and time-sharing systems (between collections of 
terminals and central computers) to the burgeoning computer-to-computer 
communication networks typified by the Advanced Research Projects Agency 
Network (ARPANET). 

The major problems (Kimbleton & Schneider 1975) in computer communica¬ 
tions include topological network optimization for cost, delay and throughput, 
routing techniques, flow control, queueing problems and the design of efficient 
protocols, and also to establish that they are effective, interfacing the network with 
a variety of terminals, computers, and other networks. Frequently these problems 
may transcend the pure communications problem i.e. that of ensuring the flow of 
information from source to destination. Indeed, people working in computer 
networking frequently distinguish between the ‘computer-communications net¬ 
work’ and the ‘communications subnet’ (Soi & Aggarwal 1981). The former 
includes the latter plus the terminals, devices, and computer intercommunication 
via the subnet. This logically includes the resident processes that control or 
interface with the subnet. 

One of the fundamental considerations in the design of a communication subnet 
is the reliability and availability of the communication paths between all pairs of 
nodes. These characteristics strongly depend on the topological layout of the 
communication links, in addition to the reliability and availability of the individual 
computer systems (nodes) and communication facilities. Links and nodes in real 
networks can fail' with non-zero probability, resulting in interruption of some 
communication paths. It is most important (Locks 1985) to evaluate the network 
overall reliability in order to know the probability of successful communication 
between any pair of nodes. 

The overall reliability is defined as the probability of obtaining a situation in 
which each node in the network communicates with all other remaining nodes. If 
this probability is to be calculated using the concepts of terminal reliability only, 
one can proceed by finding all possible paths between each of the n(n-1)/2 node 
pairs (Hansler et al 1972). Since this is impractical for graphs with a large number of 
nodes, an alternative exact procedure (Aggarwal & Rai 1981) is to use the concept 
of spanning trees. Even this being computationally intractable, fast approximate 
methods are discussed in the following sections for the reliability analysis of 
computer networks. 
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Table 1. Number of spanning trees 

Figure Network size Number 

number bee) of spanning trees 

1 (6. 9) 55 

2 (8.12) 207 

2. Clustering method 

The most efficient exact technique for the reliability analysis of computer networks, 
also becomes impractical even for moderate size networks because the number of 
spanning trees grows very fast with a slight increase in the network size. Table 1 
depicts our experience with the spanning tree approach for two different 
topologies. 

It is obvious that for networks with about one hundred nodes, the procedure 
suggested will fail because of the enormous amount of computer time and storage 
needed for reliability evaluation. An intuitive idea for solving the overall network 
reliability problem seems to be in imposing a decomposable structure (Nakazawa 
1976, 1985; Aggarwal & Soi 1982; Gadani & Misra 1982) on the network which will 
result in a set of smaller networks. In this section, we propose an m-level 
hierarchical clustering (mhc) of the set of nodes to realize such decompositions of 
the network (Soi & Aggarwal 1985). The method, though approximate only, yields 
results quite comparable with exact techniques. No significant error in the value of 
overall reliability results when practical values of link reliability (0.9 or above) are 
considered. The quantitative investigation of the proposed method indicates that 
the exactness of the results depends heavily on the clustering structure chosen and, 
thus, there is a strong need to obtain optimal clustering structures which will lead 
to best results (Anderberg 1973). 

Basically, an m-level hierarchical clustering (mhc) of a set of nodes consists of 
grouping the network nodes (which we shall define as 0th level clusters) into 1st 

Figure 1. Topology of example 1 - different 
levels of clustering, (a) 2 level clustering, (b) 3 
level clustering. 
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Figure 2. Topology of example 2 - different 

clustering arrangements, (a) good clustering, 

(b) poor clustering. 

level clusters, which in turn are grouped into 2nd level clusters, etc. This operation 
continues in a bottom-up fashion, finally grouping the (ra-2) level clusters into 
(ra-i) level clusters, whose union constitutes the rath level cluster. The rath level 
cluster is the highest level cluster and as such it includes all the nodes of the 
network. The structure of MHC can best be understood by an example. Figure 3 
shows a 3-level hierarchical clustering imposed on a 24-node network, where nodes 
are identified using the Dewey notation (Knuth 1969). 

The overall reliability evaluation after imposing MHC proceeds as below. 

Step 1\ As 1st level clusters are composed of Oth level clusters, i.e. network nodes, 
overall reliability of each 1st level cluster can be calculated using the spanning tree 
approach. Since each 1st level cluster contains only a small number of nodes (Oth 
level clusters), this step will not involve much labour. 
Step 2: Each 1st level cluster is treated as a new node (super-cluster) with its 
reliability as calculated in step 1. Overall reliability of each 2nd level cluster is again 
obtained by using a spanning tree on the new connected graph formed by the new 
“nodes” (1st level clusters). 
Step 3: Repeat step (2) until the reliability of the rath level cluster is calculated, 
which is the overall reliability of the network. 

1.1.3 Figure 3. Clustering levels. 
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2.1 Numerical examples 

For illustration, we assume below that network nodes are perfectly reliable and all 
links have the same reliability, p (or unreliability, q). These assumptions are made 
for the sake of mathematical simplicity only and the observations made by us as 
well as the MHC approach hold good even when nodes are not perfect as also when 
links have different reliabilities. 

Example l \ The network topology for this example is shown in figure 1. It has 6 
nodes and 9 branches. In (a), we impose 2-level clustering while in (b), we impose 
3-level clustering to illustrate the effect of clustering levels on the results obtained. 

Using the spanning tree approach, exact overall reliability expression for this 
network is 

rfa = 55p5-l55p6 + 16V-84p8+ 16p9. (1) 

Using 2-level hierarchical clustering (figure la) reliability can be evaluated as 
below: 
1. Evaluate the overall reliability of 1st level clusters. In this case, there are two 1st 
level clusters, 1 and 2. Reliability of each 1st level cluster which consists of 0 level 
clusters (i.e. network nodes) is evaluated using the spanning tree approach. 
Considering 1st level cluster number 1, 

R\ = p~ + 2p~q — 3p~—2p~. 

Similarly, /?2, reliability of second 1st level cluster, is 

R2 = 3/r-2p3. 

2. The 2nd level cluster can be shown graphically as having two nodes with 
reliabilities R} and R2, respectively, interconnected by three branches X4, X5 and 
X6 in parallel. Therefore, 

/?al = /?,(l-<73)/?2 = 27/rs-63/?6 + 57/?7-24/?8 + 4p9. (2) 

Proceeding in a similar way, we evaluate the overall reliability when 3-level 
clustering, as shown in figure lb, is imposed on the network, 

Rht = I2p5-24p('+\9p1-7p*+p9. (3) 

Example 2: The network topology for this example is shown in figure 2. It has 8 
nodes and 12 branches. In this case, we impose two forms of clustering structures, 
both 2-level, to quantitatively illustrate the effect on overall reliability of poor and 
good clustering. The exact reliability, using spanning trees, is given in (4) for this 
topology. The overall reliability evaluated using clustering imposed in figures 2 a 
and b, respectively, is given in (5) and (6), 

Ri2 = 208p7-752p's + 1110/?y—835/710 + 320/?11 — 50/712, 

R,i2 = 72/r7-210/?x + 249//'-151/?lo + 47/V'-6p12, 

Rh2 = 54p7- 153//s + 177//'-105/?"' + 32/; "-4/;'2 

(4) 

(5) 

(6) 
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Table 2. Solution of example 1. 

p ^£1 Ra\ Relative error Rbl Relative error 

0-90 0-9753 0-9438 0-0323 0-7940 0-1859 
0-91 0-9804 0-9541 0-0268 0-8142 0-1695 
0-92 0-9847 0-9635 0-02115 0-8352 0-1518 * 
0-93 0-9885 0-9718 0-0169 0-8562 0-1339 
0-94 0-9918 0-9792 0-0127 0-8771 0-1157 
0-95 0-9944 0-9854 0-0091 0-8979 0-0971 
0-96 0-9965 0-9906 0-0059 0-9186 0-0782 
0-97 0-9981 0-9947 0-0034 0-9392 0-0590 
0-98 0-9992 0-9976 0-0016 0-9596 0-0396 
0-99 0-9998 0-9994 0-0004 0-9799 0-0199 
1-00 1-0000 1-0000 0 1-0000 0 

2.2 Discussion of results 

Tables 2 and 3 depict the numerical value of overall reliability by evaluating the 
reliability expressions for different values of p (i.e. p varying from 0.9 to 1.0). We 
have taken this range of p because in practical r£al networks the communication 
link is invariably expected to have a value of reliability higher than 0.9. The 
following observations are now made. 
(1) The MHC technique presented yields results quite close to the result obtained by 
the exact techniques. There is very little error, which is almost insignificant. Figure 
4 depicts plot of error as a function of link reliability value (only better clustering is 
considered in this figure). 
(2) MHC techniques behave better and give results closer to those obtained by exact 
techniques when the number of levels used in clustering is less. Thus, when a 
designer is increasing the number of levels to produce a more cost-effective 
hierarchical structure, the accuracy in the evaluation of overall reliability has to be 
traded-off with the cost of obtaining the same. 
(3) Results obtained using the MHC technique depend heavily on the choice of the 
clustering structures. Better results are obtained with clusters chosen to give 

Table 3. Solution of example 2 

P Re2 Ral Relative error Rbl Relative error 

0-90 0 9622 0-9110 0-0532 0-8409 0-1261 
0-91 0-9702 0-9269 0-0446 0-8612 0-1123 
0-92 0-9769 0-9415 0-0362 0-8807 0-0985 
0-93 0-9827 0-9546 0-0286 0-8995 0-0848 
0-94 0-9876 0-9662 0-Q216 0-9171 0-0714 
0-95 0-9915 0-9763 0-0153 0-9338 0-0582 
0-96 0-9947 0-9846 0-0102 0-9495 0-0454 
0-97 0-9971 0-9913 0-0058 0-9640 0-0322 
0-98 0-9987 0-9961 0-0026 0-9773 0-0214 
0-99 0-9997 0-9990 0-0007 0-9893 0-0104 
1-00 1-0000 1-0000 0 1-0000 0 
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Figure 4. Relative error. 

maximally connected subgraphs, while poor results are obtained when chain 
clusters are used. 
(4) The errors in the results obtained by the MHC technique and those obtained by 
the exact technique go on decreasing as the value of p increases and in the limit 
when p becomes unity, error is zero. MHC thus gives almost the same results as 
exact techniques in most of the range of interest, with the additional advantage of 
enormous saving in computation time as well as storage (due to the reduced 
number of spanning trees to be handled and the simpler reliability expression 
involved). 
(5) Exact techniques work ideally only if one can assume availability of practically 
infinite storage and computer time, but in realistic situations this assumption is 
obviously not valid. Thus, with a reasonable limit on the availability of storage and 
computer time, MHC techniques may rather prove to be a necessity for large 
networks. 
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3. Reliability index 

In this section, we discuss a still faster method which does not give the reliability 
value but rather gives a reliability index, proportional to the reliability value, based 
on network topological parameters. A network can be described topologically by 
its parameters such as: number of nodes, number of links, ratio of number of links 
to number of nodes in the network, minimum node connectivity, network radius, 
network diameter, network girth, and network articulation level. 

3.1 Existing reliability measures 

Several existing reliability criteria based on network topology are briefly discussed 
in this section. 

1. Connectivity, the simplest reliability criterion, is the minimum number of edges 
or nodes which must be removed from a network in order to break all paths 
between any pair of nodes. It is equal to the lower bound on the maximum number 
of edge or node disjoint paths between any pair of nodes (Wilkov 1972). 
2. Cohesion, a more general reliability criterion, is defined (Boesch & Thomas 
1970) as the minimum number of edges or nodes which must be removed from a 
graph in order to isolate any subgraph of m nodes from the rest of the graph. 

3. Diameter is the maximum length of any shortest path in a graph (in terms of links 
traversed). If d(i,j) denotes the distance between nodes n, and nj in a graph G, then 
the maximum length of any shortest path in G represents the diameter as: 

K(G) = max {d(i, j)}. (7) 
ij 

The realization of graphs with minimal diameter as maximally reliable networks is 
discussed (Toueg & Steiglitz 1970). 

4. Girth is the minimum length of any circuit in a graph. A simple heuristic method 
for generating graphs of given girth having a specified number of edges and a 
minimal number of nodes is suggested (Wilkov 1972). 
5. Network articulation level is a measure of network vulnerability and considers 
both nodes and edges for defining network topology. Node (edge) articulation of 
level m is that minimal set of m nodes (edges) which, if deleted, would break the 
network into at least two non-communicating subnets. As a measure of network 
articulation level, prime node (edge) cutsets of size m with respect to any pair of 
nodes is defined in (8) and (9). 

Xn(m) = max {X"j(m)}, (8) 
ij 

Xe(m) = max {X*(9) 
ij 

3.2 Suggested reliability index 

The previous section briefly described the existing reliability measures based on the 
network topology. None of these criteria is an adequate measure for designing 
computer networks (CN) with maximal overall reliability. The failure to meet the 
design requirements probably results from very high interdependence among these 
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*3 

8 

(g) 
1 • X7 5 Xs 3 

Figure 5. Network configuration: (a) 9 nodes, 12 edges; ;b) 8 nodes, 12 edges; (c) 7 
nodes, 10 edges; (d) 6 nodes* 9 edges; (e) 8 nodes, 12 edges; (f) 7 nodes, 11 edges; (g) 8 
nodes, 12 edges; (h) 6 nodes, 9 edges. 

topological parameters. We have investigated this problem by experimenting on 
several ARPANET-like networks a-nd summarize the effect of topological parameters 
on overall reliability as follows: 
1. Reliability increases with an increase in connectivity. 
2. Reliability decreases with an increase in the diameter of the network. 
3. Reliability increases with an increase in the girth of the network. 
4. Reliability decreases with a decrease in the cohesion of the network. 
5. Reliability increases with a decrease in the node (edge) articulation level of the 
network. 
Based on the above observations, we assert that a maximally reliable network 
should have maximum connectivity, minimal diameter, maximum girth, large value 
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Table 4. Reliability index. 

Network Reliability 
description Overall reliability (p) Topology parameters index 

Figure (n,e) 0-6 0-7 0-8 0-9 d 'K m t 8 X"(m) P 

a (9,12) 0-349 0-551 0-801 0-958 2 3 3 2 3 4 3-37 
b (8,12) 0-381 0-618 0-831 0-962 2 4 3 2 2 9 3-47 
c (7,10) 0-449 0-677 0-866 0-972 2 3 3 3 2 4 3:75 
d (6, 9) 0-476 0-729 0-887 0-975 2 3 3 3 2 3 4-00 
e (8,13) 0-485 0-731 0-896 0-982 2 3 3 3 1 4 4-25 
f (7,11) 0-525 0-745 0-904 0-983 2 3 3 3 1 3 4-28 

g (8,12) 0-528 0-753 0-922 0-991 3 2 4 4 0 0 8-50 
h (6, 9) 0-626 0-821 0-944 0-993 3 2 4 4 0 0 -8-50 

of cohesion, and a minimum level of articulation for both nodes and edges. But in 
the design of computer networks, it is impossible to meet all these requirements 
simultaneously. Hence, we realized the need for developing a reliability index, 
based on a combination of these topological parameters, which is a suitable index 
of overall reliability. With a view to having a single reliability index (Soi & 
Aggarwal 1981) which can be incorporated in the design of maximally reliable 
networks, we suggest 

/ + 8 + d 2 c 
P =- + — , 

K + Xe(m) + X"{m) n 
(10) 

where e = number of edges, n = number of nodes, d = connectivity, t = girth, 
K — diameter, Xe{m) = network edge articulation level, X\m) = network node 
articulation level, 8 = cohesion and P = reliability index. 

For the purpose of verification, eight different ARPANET-like topologies were 
chosen (figures 5a-h). 

We also calculated the topology parameters which form the basis of the existing 
reliability measures and the reliability index. Table 4 summarizes the important 
results. Results confirm that none of the reliability measures based on a single 
network topology paramefer is suitable for designing networks with maximum 
overall reliability. The reliability index which has been formulated by taking into 
account all the topological parameters bear testimony that overall reliability 
increases with-an increase in the index. In on-line performance modelling and 
analysis of CN it is customary to measure the parameters describing the network 

topology and to have a qualitative idea of the overall reliability of the network. The 
evaluation of reliability index from the topological parameters is quite simple and 
does not require too much computation. Thus, determining this index to get a 
qualitative idea of network overall reliability is far more economical and simple 
from the computational point of view as compared to evaluating the overall 
reliability of a network. These reliability indices can also compare the overall 
reliability of different network topologies without actually solving for the overall 
reliability. 
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Abstract. The reliability of a system is the probability that the system 

will perform its intended mission under given conditions. This paper 

provides an overview of the approaches to reliability modelling and 

identifies their strengths and weaknesses. The models discussed include 

structure models, simple stochastic models and decomposable stochastic 

models. Ignoring time-dependence, structure models give reliability as a 

function of the topological structure of the system. Simple stochastic 

models make direct use of the properties of underlying stochastic 

processes, while decomposable models consider more complex systems 

and analyse them through subsystems. Petri nets and dataflow graphs 

facilitate the analysis of complex systems by providing a convenient 

framework for reliability analysis. 

Keywords. Reliability; stochastic models; decomposition-aggregation 

method; stochastic Petri nets; dataflow graphs. 

1. Introduction 

In the pursuit of maximum efficiency in the operation of computer systems, the 

complexity of equipment and configurations has been an ever-increasing phe¬ 

nomenon. One of the measures of system effectiveness is reliability defined as the 

probability that the system will adequately perform its intended mission for a given 

period of time under stated environmental conditions. If an adequate mathematical 

model can be developed for the system, reliability can be determined from that 

model. The intention of this paper is to discuss some of the significant approaches 

to modelling available in the literature and to introduce dataflow graphs as a 

possible modelling technique. 

The literature on reliability models is vast and it is not the intention of this paper 

to provide an extensive overview of different types of available models even though 

such a survey could prove to be quite beneficial for a reliability scientist. Here we 

wish to concentrate on the approaches to modelling and the general classes of 
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models such approaches cover. For specific models, the readers may be referred to 
the bibliographies appearing in Agrawal & Barlow (1984), Kumar & Agarwal 
(1980), Lie et al (1977), Osaki & Nakagawa (1976) and Tillman et al (1980). 

Weiss (1963) has classified reliability models as being either topological or 
time-dependent. A topological reliability model considers reliability as a function 
of system structure at a fixed moment of time. On the other hand a time-dependent 
reliability model considers the state of the system as a stochastic process and 
reliability is determined as a performance measure of the underlying process. In the 
following sections we shall discuss some specific illustrative models which are either 
structural or stochastic or a combination of both. 

2. Structure models 

In considering complex systems, it is common to use stochastic networks in which 
components of the system correspond to the arcs of the network. Thus the 
probability that a component functions is identified as the probability that the 
corresponding arc of the network functions. The reliability of the network can be 
defined as the probability that a path consisting of only functioning arcs exists from 
the originating node to the exit node. With this network model, the problem of 
reliability determination is transformed into a problem of identifying the paths 
through the network and the resulting probability. 

The structure of a reliability network is described using structure functions. 
Consider a system consisting of r components Alf A2y . . . , Ar. Associate a state 
variable xt such that 

1 if A, is working, 

0 if A, has failed. 

Similarly, define the state variable y such that 

if the system is working, 

if the system has failed. 

Now, one can define a function <f) such that 

y = 4>{x 1, x2, . . . , xr); (1) 

such functions are known as structure functions. Monotone (also known as 
coherent) structure functions can be used to represent reliability networks. For 
example a series network of r components has the structure function 

r 
4 

y = II • (2) 
i=l 

and a parallel network of r components, where at least one component should be 
working for system success, has the structure function, 

y = i - fl (i-*,)- 
/=1 

(3) 
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Noting that the reliability of a unit is the probability that the corresponding state 

variable jc assumes the value 1, when all components in the network perform 

independently of each other, the reliability of the network is determined by 

replacing the Us by the corresponding reliabilities in the structure function. For 

example, let p{ be the reliability of the component Aj(i = 1, 2, . . . , r). Then, the 

reliabilities of the series (ser) and parallel (paral) structures are obtained as 

Rscr = II Ph 
i= 1 

(4) 

FI 0 ~Pi), 
,= 1 

respectively. 

For a given reliability network, structure functions can be established using 

minimal paths or minimal cuts of the underlying graph. For a comprehensive 

discussion of the properties of structure functions and their role in the 

determination of the reliability of complex structures reference can be made to 

Barlow & Proschan (1975) and Kaufmann et al (1977). 

Algorithms for the computation of reliability using stochastic networks generally 

use graph theoretic concepts such as path, state and cutset enumerations. A major 

drawback of these enumeration techniques is that the number of operations grows 

exponentially with the size of the network. If there are n nodes in the network, 2" 

states should be considered. Using path enumeration algorithms, the determination 

of probabilities from the identified paths is made with the application of the 

inclusion-exclusion theorem for probabilities. If there are n paths A ,, A2, . . . , An 

linking the input node i with the output node /, let Sr be the probability that exactly 

r of these paths function. Now the probability that at least one of the paths function 

is given by 

Rx = 5,-52T53- . . . ±Sn. (5) 

Also, the probability that at least m of the n paths function is given by 

I (-ir 
r- 1 

m — 1 

(Feller 1968, pp. 99, 109). 

The inclusion-exclusion principle results in the cancellation of many terms in (5) 

and their inclusion initially increases the size of the problem. An algorithm to use 

only the noncancelling terms of (5) has been given by Satyanarayana & Prabhakar 

(1978) based on the concept of domination in the underlying graph of the network. 

For extensions of this technique and related results, reference can be made to 

Satyanarayana & Hagstrom (1981), Satyanarayana (1982), Satyanarayana & Chang 

(1983) and Agrawal & Satyanarayana (1984). For an excellent survey of network 

reliability including the use of domination theory and special structures see 

Agrawal & Barlow (1984) and for efficient algorithms using the inclusion-exclusion 

principle see Abraham (1979), Aggarwal et al (1975), Fratta & Montanari (1973) 

and Lee (1980). 
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Other efforts in simplifying the problem have led to the decomposition approach 
as given by Rosenthal (1977) and the use of upper and lower bounds as given by 
Shogan (1976). Various other algorithms have been discussed by Grnarov et al 
(1979) and Grnarov & Gerla (1981). 

A specific problem that is very characteristic of computer networks and has 
attracted considerable attention is parallel computation. This procedure is based on 
the simultaneous execution of several computational steps. Several graph theoretic 
algorithms have tried to address this problem without much success. The most 
effective solution so far has been the use of reduction in which essential parallel 
arcs are considered as arcs in series. If only some of the parallel arcs are needed, 
the set of parallel arcs are replaced by a single arc with reliability corresponding to 
the parallel set. We shall discuss this problem later in more detail. For general 
properties of models for parallel computation the readers are referred to Karp & 
Miller (1966) and Miller (1973). 

3. Simple Markovian models 

An overwhelming majority of time-dependent reliability models use a Markov 
process to represent the system. Even when they depart from strictly Markovian 
models, either quasi-Markovian properties are assumed or state space is sufficiently 
expanded to make the system Markovian. We identify below some of the 
representative techniques used in some simple models. 

Consider a two-component system, with one component in operation and the 
second on standby. Let \x be the (constant) failure rate of the active component 
and A2(A2 ^A}) be the failure rate of the standby component. With this assumption 
(constant failure rate meaning that the life times are exponential) the reliability can 
be obtained in two ways. First let us use the simpler approach of identifying events 
that contribute to the successful operation of the system during (0,t]. Let Pn(t) be 
the probability that the number of failed components during (0, /] is n (n = 0,1,2). 
Clearly we have 

P0(t) = exp(- Ap) exp(-A2r) = exp[-(A, + A2)f]. (7) 

When one component has failed, it could be either the standby component or the 
one in operation. In the latter case, the standby component takes the place of the 
failed component immediately. Thus we get 

Px(t) = exp(-A^) [l-exp(-A2/)] + 
r * 

+ Aj exp(-Ajr)exp(-A2r)exp[-Ax(r— t)] dT 

= [(A, + A2)/A2]{exp(-A,0 exp[-(A, + A2)r]}. (8) 

The reliability R(t) is now obtained as 

m = p0(t)+pm 

= [(A| + A2)/A2] exp(—A,/) —(A,/A2) exp[—(A, + A2)f]. (9) 
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Equation (9) can also be obtained using the following argument (Trivedi 1982). The 

system life is composed of two components, (i) time until the first failure, which has 

an exponential distribution with failure rate (At + A2); and (ii) after the first failure 

the time until the second failure, which has an exponential distribution with failure 

rate Aj. Thus the life distribution of the system has the probability density 

(A1 + A2) exp[—(Aj + A2)t]A1 exp[—Aj(/- t)] dr 
Jo 

= (Al/A2) (Al + A2){exP(-V)-exP[-(Al + A2)f]}> (10) 

which also leads to (9). In fact Trivedi (1982, p. 167) has shown that this argument 

can be extended to a system with hybrid vV-tuple modular redundancy (hybrid NMR, 

for short) which was originally analysed by Mathur & Avizienis (1970). A hybrid 

NMR system consists of N+ S independent components, N of which are in operation 

and the remaining S are in a standby mode. A minimum of, say, m components are 

needed for the successful operation of the system. System modules such as the 

hybrid NMR are integral parts of fault-tolerant computer systems. 

3.1 Fault coverage 

In the design of fault-tolerant computer systems a feature that has been introduced 

to bring more realism to the model is the coverage parameter. For instance in a 

hybrid NMR system on the failure of an on-line component, it may be impossible to 

switch-in a standby component soon enough to recover from failure. If that 

happens the fault is said to be uncovered. The probability that a fault can be 

covered is known as the coverage parameter. 

Suppose we incorporate the coverage feature in the one unit standby system 

considered above. Let A2 and A2 be the constant failure rates of the on-line and the 

standby components, respectively. Also let cl and c2 be the probabilities that the 

system will recover from a failure of the on-line and the standby unit respectively. 

A direct Markov process approach would seem to be appropriate in this case. (For 

the extension of the previous approach, see Trivedi 1982, p. 254.) 

For the probabilities Pn(t) (n = 0,1, 2) that there are n failed units in the system 

at time t, we have the difference-differential equations 

Po(!) ~ ~ (A1 A2)^o(0> 

Pi(0 ~ ~ Ai Pi (0 T (Aici A2c2)P0(0> 

^2(0 = [(1 “ cl)Al + (1 — c2)^2]^0'(0 + AlA (0> (11) 

with the initial condition P„(0) = 1 for n = 0, and = 0 otherwise. Using Laplace 

transforms the set of equations (11) can be solved to give 

p<M = exp[-(Ai + A2)'L 

PM = [(AiC1 + A2c2)/A2]{expt-A1/]-exp[-(Al + A2)/]}, 

pi0) = [(l-.cl)A, + (l — c2)A2]exp[ — (A1 + A2)/] + 

+ (A i/a2 ) (A iC, + A2c2) {exp( - A ,0 — exp[ — (A, + A2)r]}. (12) 

and 
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It should be noted that P2(t) is also the probability density of system life. Using 
the so-called “equivalent” coverage parameter 

c = + A2c2)/(A1 + A2), 

and noting that the reliability R(t) is given by P0(t) + Px(t), we get 

R(t) = exp[-(A, + A2)f] + [c(A, + A2)/A2]x 

x {exp(—Aj?) - exp[-(A, + A2)t]}. (13) 

If we are interested only in the mean time to failure, it can be determined directly 
from the Laplace transforms (lt) of P0(t) and Px(t). Let </>„(#) be the LT of Pn(t) and 
p(6) = <£o(0) + 4>i(0); then the expected length of system life E[L] follows as 

E[L] = 

r oo 

R(t)dt = lim p(6) 
o 0 

- [1/(^1 +A2)][l + (Ai + A2)c/Ai]. 

(14) 

(15) 

A similar method can be employed to get the reliability characteristics of a hybrid 
NMR system introduced earlier, but now with a coverage parameter. For the 
expression for E[L] in this case see Trivedi (1982, p. 259) where it is derived by the 
conditional distribution arguments illustrated earlier. 

In the example discussed above we have assumed that the coverage probability is 
known. In practice, it is not easy to estimate. Given below is an indirect approach 
to its estimation, which also provides a better insight into the coverage 
phenomenon. (See Stiffler 1980 and Trivedi & Geist 1981, 1983.) 

A Markov model for fault detection can be given as follows. The model has five 
states. An active state A, a benign state B, an error state E, a detection state D and 
a fail state F. Let A be the rate at which A produces errors and 8 be the rate at which 
the errors are detected. Assuming the faults to be of intermittent type, the process 
switches back and forth between the active state A and the benign state B (where 
no errors are produced) with rates a (for A —» B) and (3 (for B —» A). The error 
can also be detected from the error state E. Hence let qy and py(p = 1 — q) be the 
rates for the transitions E —» D and E —» F, respectively. With constant transition 
rates we have exponential residence times and a Markov model. The process is 
governed by the differential equations 

PA(t) = -(a + \ + 8)PA(t) + pPB(t), 

PB (0 = — (3Pb (t) + aPA (t), 

Pe(0 ~ — ^ 

Pd(0 = (0 + y^E (0 > 

Pf(0 = (16) 
with the initial condition PA{0) = 1. Taking Laplace transforms in the usual 
manner and simplifying we get 

4>d(0) = (l/e)l8 + qyA/(8+y)]{(0 + l3)/[(d + P)(d+a + \ + 8)-aP]}. 

(17) 
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Clearly lim PD(t) gives the probability that the fault will be eventually detec- 
f_»oc 

ted before the system fails. Thus this probability can be used as the coverage 
probability for the process. Using properties of Laplace transforms, we get for the 
estimate of the coverage probability 

c = lim PD{t) = lim dcf)D(0) = (5 + q\)/(8+ a). (18) 
t—* 6 —> 0 

3.2 Systems with repair 

In the examples above we have considered only non-maintained systems in which a 
failed component is only replaced, but not repaired. Therefore the appropriate 
Markov process model has the characteristics of a pure death process which can be 
analysed as a Markov process as well as through simple conditional probability 
arguments. However, if the component maintenance feature is incorporated, 
simple arguments fail and only Markov process techniques are effective except for 
some simple system configurations. We give below some examples of such 
problems. 

Consider the one unit standby system considered above with a maintenance 
feature. Let Xx and A2 be the constant failure rates of the on-line and the standby 
component, respectively. Also let the repair time of a failed unit be exponentially 
distributed with mean l/p regardless of the on-line or standby nature of usage. 
Now for the probabilities Pn(t) (n = 0, 1, 2), that therd are n failed units in the 
system at time /, we have the difference-differential equations 

P0(*) = — (Ai + A2)P0(0 mA(0, 

P\(t) = ~ (Aj + p,)Px(t) + (Ai + \2)P0(t), 

Piit) = A Ait), (19) 

with the initial condition Pn(0) = 1 if n = 0, and = 0, otherwise. These equations 
can be solved taking LT and inverting them. If we introduce an imperfect coverage 
feature into the model with coverage probabilities cx and c2, we get the differential 
equations 

Po(0 = ~ (Ai T A2)/>q(0 + pPx(t), 

PM — — (Aj + /x) Pj (t) + (AjCj + A2c2) Pq(0, 

P'(t) = [(1 —Cj)Aj +.(1 — c2)\2]P0(t) + \xPx(t). (20) 

The extension of this analysis to the hybrid NMR system follows on similar lines. 
For an example with three active units, a spare and imperfect coverage, the readers 
are referred to Trivedi (1982, p. 404). 

3.3 Availability 

Availability is another reliability characteristic which gives the long run probability 
that the system will be available for use. For instance, consider the one unit standby 
system with maintenance whose behaviour is described through (16), As 
represented, the system fails when both units fail. Suppose the system is brought 
back to operation through repair on the failed units. Then state 2 (with two failed 
units) will no longer be an absorbing state. Assuming that when there are two failed 
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units repair on both of them occurs simultaneously and the repair times are 
exponential with rate /x, the long term probability pn (n = 0, 1, 2) that the number 
of failed units at the time of observation is n is given by the steady state equations 

(A,+A2)p0 = ppt, 

(A, + p)P\ = (A, + A 2)p0 + 2pp2, 

^■PPi ~ ^\Pi- 

Solving these equations with the help of the additional condition 

we get 

Pn = 2p2/D, p, = 2/a(A,+A2)/D, p2 = A,(A|+A2)/D, 
where 

D = 2/x" + (2/x + A j) (A j + A2). 

The availability of the system 

A = Pq -\- p j — 2 /x()U + Aj-I-A2)/Z). (22) 

As illustrated above, the analysis of maintained systems is very much similar to 
the analysis of queueing systems. The occurrence of failures is the customer arrival 
and the repair time is the service time. A large number of papers have appeared in 
the literature which exploit this similarity. In many of these papers component 
failure distributions or the repair time distributions have been assumed to be 
non-exponential. Several of the papers listed in the two bibliographies cited above 

(Osaki & Nakagawa 1976, and Kumar & Agarwal 1980) provide excellent 
examples of such investigations. 

3.4 NMR systems with voting 

The NMR systems described above come with “voters” which match the signals 
coming from the parallel components to make sure that the required number of 
them are functioning. Consider a triple modular redundant (tmr) system with a 
majority voter. The three parallel .components have a constant failure rate of A, and 
a constant repair rate of px. Let A2 be the failure rate of the voter when all three 
components are working and A3, when one of the three has failed. Now the state 
space needs to be specified by a vector (n, m) where n is the number of failed 
components and m is the state of the voter (0 if functioning and 1 if it has failed). 
The probabilities Pnm (n = 0, 1, 2; m = 0, 1) satisfy the equations 

pm(0 = — (3Aj + A2) P(x)(0 + P\Pw(t), 

Ao(0 = — (2^i T A3 + /Xj) P\o{t) + 3A1F00(r), 

^20 (0 = 2A1P10(/l), 

pn0) ~ ^3^io(0’ (23) 

with the initial condition P/;w(0) = 1 Only if n = 0 and m = 0, and = 0, otherwise. 
As described above the performance of the voter is dependent on the 

performance of the parallel components. This dependence forced us to use an 
enlarged state space. If the two subsystems - the 3 parallel components and the 
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voter - are independent they can be decomposed into two systems which can be 

analysed separately. In larger networks with dependent subsystems, the state space 

requires expansion to provide information on every subsystem. Consequently, the 

extension of a Markov process model to a large network has to confront the 

problem of an expanding state space as well. A method intended to overcome this 

problem uses a decomposition-aggregation approach, in which the subsystems are 

analysed first, the results of which are then aggregated to provide the analysis of the 

entire network (see Rosenthal 1977). This method is the subject of the next section. 

We close this section by directing the attention of the reader to three reliability 

prediction models for large fault-tolerant computer systems. (1) ARIES-an 

automated reliability estimation system model by Ng & Avizienis (1977) which 

determines reliability in terms of the solutions for the forward Kolmogorov 

equations of the underlying Markov process where the states are the working'and 

failed components of the network. (2) SURF - a reliability model by Landrault & 

LaPrie (1978), which is similar to ARIES except that it allows for non-exponential 

life distributions using the method of stages. (3) CAST - a complementary analytic 

simulative technique developed by Conn et al (1977) which is a special case of the 

ARIES model, but with the introduction of aspects such as coverage and transient 

faults. For an excellent review of these models reference can be made to Geist & 

Tnvedi (1983). 

4. Decomposable stochastic models 

The decomposition-aggregation solution technique has been successfully used in 

the analysis of queueing networks. An illustration of this technique in the queue 

context is given by Chandy et al (1975). Also see Brandwajn (1974) and Chandy & 

Sauer (1978). The major thrust of the method lies in decomposing the network into 

sub-networks, which can be relatively easily analysed, and in aggregating the 

results as a network of sub-networks. Unless the sub-networks are independent 

(that is, made up of irreducible sets of states in the terminology of a Markov 

process) the results so derived can only be approximate, as the interactions 

between the states in different subnetworks will have to be ignored while 

aggregating the results. Nevertheless, the method has proved quite successful in 

queueing networks when the sub-networks are only mildly dependent. We give 

below a simple illustration of this technique in reliability analysis based on an 

example given by Trivedi & Geist (1981, 1983) (also see Geist & Trivedi 1983 for a 

discussion on the merits of the CARE III approach to reliability modelling). 
Consider the example we used earlier to get an estimate of the coverage 

probability. In that example we considered a five-state model with an active state 

A, benign state B, error state E, detection state D and fail state F. Then we had 

only one unit in consideration. Suppose now, there are two units and at least one of 

them should be functioning for system success. With two units, we may think of two 

types of failures, one due to an undetected fault and hence an uncovered failure, and 

the second due to the lack of functioning units even though the failures have been 

covered. Thus, the various states of the model are: 0 - both units are functioning, 

1A - only one unit is functioning, IB - the unit is in a benign state, ID - fault 

detection state, IE - error state, IF - fail state due to the uncovered failure of one 
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I-1 

Figure 1. An 8-state Markov 

model of a two-component sys¬ 

tem. 

unit, 2F - fail state due to the uncovered failure of both units and 2G - fail state 
due to the lack of functioning units. A Markov model similar to the one whose 
transitions are governed by (18) can be developed under the assumptions that the 
transition rates are constant. For explicit expressions for the probabilities Pn(t) 

(n = 0, 1A, 1E, 1D, IF, 2F and 2G) the readers are referred to Trivedi & Geist 
(1981, p. 21) who do not include the benign state IB for the sake of simplicity. 

An approximation to the above system is obtained by lumping states 1 A, IB, IE, 

and ID into a single state, say 1G and considering a 5-state process instead of the 
original 8-state process. This is illustrated in the figures 1 and 2. 

It may be noted that the subsystem inside the square box in figure 1 is similar to 
the fault detection system considered in (18). If the system given by figure 2 is to 
represent the system given by figure 1, the rates of transition from 1G to 2G and 2F 

in figure 2 should be the same as those in figure 1. It is easy to see that these are not 
the same; in fact, one can show that these need not even be constants, which is a 
necessary condition to make the reduced system a time-homogeneous Markov 
process. Nevertheless, as an approximation one could analyse the subsystem 1G 
separately as is done in the fault detection model and get a rate of transition from 
subsystem 1G to state IF such that the mean residence time of the system in 1G is 
the same as the total mean residence time in states 1 A, 1B, ID and IF. For 
instance, ignoring state IB (i.e., setting a = f3 = 0) for simplicity, noting that the 
mean residence time in state n is given by 

* oo 

lim exp (- 6t) Pn (r) dt, 
J o 

Figure 2. A 5-state lumped 

Maikov model of the system 

shown in figure 1. 
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the total mean residence time 77 in states 1A, ID and IE is obtained as 

17 = [A(y+A + p + S) + y(S + (7p)]/[A(y + A)(S + p + A)]. (24) 

Let a (assumed constant) be the rate of transition between 1G and IF. Then, the 
mean residence time of the process in state 1G, denoted by v, is obtained as 

v = 1/(a + A). (25) 

Equating (24) and (25) we get 

a = py{Ap/[A(y + A + p + 5) + y(8 +qp)]}. (26) 

Now using a as the constant transition rate between 1G and IF the system can be 
analysed as a simple time-homogeneous Markov process. 

Alternatively, one could define a time dependent transition rate a\t) between 
1G and IF and determine a'(t) using the relation 

[^(O + AbM + AdM + AeCOKM = pyf\EU)- (27) 

Clearly this leads to a non-homogeneous Markov process whose analysis is by no 
means simple and requires either explicit solutions for the probabilities in (27), in 
which case, the approximation is unnecessary, or another set of approximations to 
determine them indirectly. For details see Trivedi & Geist (1981). Also see Stiffler 
et al (1979) for the CARE III Final Report where non-homogeneous process 
approximations are extensively proposed. 

One of the advantages of the decomposition-aggregation approach is the facility 
it provides for the use of appropriate solution techniques for sub-networks. The 
Hybrid Automated Reliability Predictor (harp, for short) model designed by Geist 
et al (1983) (also see Geist & Trivedi 1983) combines both analytical and simulation 
models using subsystems. This hybrid model is used to overcome some of the major 
limitations posed by the ultrahigh reliability predictor models such as CARE III 
(also, ARIES, SURF and CAST mentioned in the last section). In an illustration of this 
approach, a fault-tolerant computer system similar to the one described earlier, is 
decomposed into fault-occurrence and fault-handling submodels. Justification of 
this decomposition is based on the observation that the fault occurrence behaviour 
of a system is composed of relatively infrequent events while fault-handling 
behaviour is composed of relatively frequent events. 

As reported in Trivedi et al (1984), the fault-occurrence model uses systems of 
differential equations for the underlying (possibly non-homogeneous) Markov 
process. Such equations involve coverage distributions reflecting the capability of 
the system to recover from faults. We illustrate this procedure using the 
time-homogeneous case (Trivedi 1984). 

Let Pft) denote the probability of being in an operational state j representing the 
number of covered faults at time t. Let Ar r+1 be the transition rate from state r to 
r + 1 (rate of occurrence of fault where the system is in state r). Also let pD(x) be 
the probability density of the time needed for fault detection. We now have 

rt 

Pj(t-x)Aw+ xpD(x)exp(- AJ+, j+2x) dx. 
J 0 

Equation (19) gives the LT of pD(x) in a simple fault handling model. As discussed 
in Trivedi et al (1984) an Extended Stochastic Petri Net (ESPN) simulation model is 
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used in more complex examples. Petri net models are described in the next 
subsection. Equation (28) can be evaluated by numerical integration. 

To determine the reliability R(t) of the system, define Qj(t) as the probability 
that by time t exactly j faults have occurred, either all of them have been covered or 
the last one is being handled, and the system has not failed. Using P^t) we get 

G/+i(0 

"t 

pj(x) A/.,+iP/'MexP(“ Vu+2*) d*. 
. 0 

where pF(x) gives the probability that a single fault will not cause system failure in 
time x (i.e. complement of the c.d.f. for system failure). The reliability of the 
system now follows by noting 

m = l Qji o. (30) 

where S is the set of operational states. The ESPN model can be used to determine 
pF(x) as well. 

4.1 Petri net models 

Petri nets have been used to model systems which exhibit concurrent, asynchronous 
or nondeterministic behaviour. A Petri net is a bipartite directed graph with a set of 
places P (shown as circles) and a set of transitions T (shown as bars) as the two 
classes of nodes; a set of edges E connects places and transitions. Places can contain 
tokens to enable transitions; a transition is enabled when each of its input places 
contains at least one token. An enabled transition fires consuming one token from 
each of its input places and creating a token at each of its output places. The tokens 
at places can be used to define the state (or marking) of a Petri net and the firing of 
transitions to define state changes. For a more detailed introduction, the readers 
are referred to Peterson (1977, 1981). 

Several extensions have been proposed to the basic Petri net model described 
above. They include the OR-logic (not all input places need contain tokens to 
enable a transition), inhibitor-arc (transition is enabled only when the input place 
does not contain a token), probability-arc (to introduce non-determinism in 
enabling transitions) and counter-arc (transition enabled only when the input arc 
contains at least k tokens). ESPN models include inhibitor, probability and counter 
arcs. 

Timing information can also be associated with Petri nets to facilitate reliability 
and performance analysis of computer systems using these models. Sifakis and 

others (see Coolahan & Roussopoulos 1983, and Sifakis 1980) associate a non¬ 
negative constant b with each place having the semantics that an arriving token 
is “unavailable” until it has been at the place for a time interval of length b. Time 
can be associated also with transitions. In timed transition Petri nets (Magott 1984; 
Ramamoorthy & Ho 1980; Zuberek 1980) a non-negative constant is associated 
with a transition, similar to associating time with places. In stochastic Petri nets 
(Beyaert et al 1981; Dugan et al 1984; Molloy 1981, 1982, 1985), a probability 
distribution is associated with the transitions. Here, once a transition is enabled, an 
amount of time with a specified probability distribution elapses. If the transition is 
still enabled, it will then fire. Zero firing time is allowed by some researchers 
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(Marsan et al 1984). Molloy establishes an isomorphism between the markings in a 
Petri net and a Markov process enabling the application of either time- 
homogeneous or semi-Markov analysis techniques to Petri net models. 

One of the problems with both timed transition and stochastic Petri nets is when 
to begin the firing epoch - upon arrival of the first token or the instant a transition 
is enabled. One need also consider whether a second or subsequent epoch can 
begin while one is still in progress. A second problem to resolve is firing conflicts. 
Those models that depend on fixed firing time generally assign a probability over 
the marking space from the current to the next marking. Stochastic Petri net 
models generally use the firing rate (based on random firing times) to determine 
the next marking from the current one. A difficulty arises if one allows zero firing 
time with some transitions. The probability that such transitions will fire once 
enabled approaches one. The solution is to augment the firing rates with transition 
probabilities as is done in timed place Petri nets. This is achieved by the 
introduction of inhibitor, probability and counter arcs as in ESPN. 

4.2 Dataflow graph models 

In recent years the dataflow concept of computation has attracted considerable 
attention among computer architects and programming language designers. 
Dataflow graph models have been successfully employed to simulate computer 
systems (Gaudiot & Ercegovac 1984; Kavi 1983; Srini & Asenjo 1983). The 
dataflow model can also be used to represent concurrent, asynchronous or 
nondeterministic behaviour of computer systems. A formal definition of dataflow 
graph models is presented in Kavi et al (1986). The chief advantage of dataflow 
graphs over other models is their compactness and general amenability to direct 
interpretation. 

Dataflow graphs are bipartite directed graphs where the two types of nodes are 
called actors and links. The nodes are interconnected by edges which can be 
considered as channels of communication. Actors represent functions performed 
(similar to transitions in Petri nets) and links are considered as place holders of 
tokens (similar to places in Petri nets). For the purpose of studying the reliability of 
a dataflow graph model, the actual meaning of the functions performed by actors 
and the type of data tokens are not relevant. The presence of tokens at links act as 
triggering signals to enable actors to perform. Such dataflow graphs are known as 
uninterpreted dataflow graphs. 

In its basic form, actors are cleared for execution only when all the input links to 
the actors contain tokens and no output links contain tokens (Dennis 1974). When 
the actor executes (fires), tokens from the input links are consumed and new tokens 
are generated on the output links. This mode of sequencing has been extended to 
permit the execution of actors when only a subset of input links (called input firing 
semantic set, F,) contain tokens and only a subset of output links (called output 
firing semantic set, F2) is empty; tokens on the input set are consumed and new 
tokens are generated on the output set. For different instances of the execution of 
an actor the firing semantic sets may be different, thus introducing nondetermina- 
cy. Probability distributions can be associated with the input and output firing 
semantic sets to represent the nondeterministic nature of execution. 

Five different actor types can be identified based on the firing sets. 
Conjunctive actor: All input links must contain tokens for the actor to fire. 
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Disjunctive actor: Only one of the input links must contain a token for the actor to 

fire. 

Collective actor: One or more of the input links may contain tokens for the actor to 

fire. Collective actors are not considered in this paper. 

Selective actor: When the actor fires, only one of the output links receives a token. 

Distributive actor: When the actor fires, all output links receive tokens. 

The graphical representation of these actor types is shown in figure 3. The 

reliability of an actor at is denoted by Rah the reliability of the path from to 

including the reliability of ai but excluding the reliability of af by Rtj, while the 

reliability of link j (or that of the communication path) is denoted by C}. 

The reliability of a dataflow graph can be defined as the probability of successful 

completion of a sequence of operations to be performed by the actors of the graph. 

Thus, if this sequence is identified as the path of a particle traversing the graph, 

then the reliability is the probability of occurrence of a successful path. 

Because of the hierarchical nature of dataflow graphs, the reliability of a 

dataflow graph can be determined in two stages. At the first stage, reliabilities of 

subgraphs are calculated. At the second stage, the reliabilities of the subgraphs are 

combined appropriately based on the topological structure of the graph. This 

decomposition-aggregation approach is similar to that of HARP (Dugan et al 1984). 

However both structural and behavioural decomposition are possible with dataflow 

graph models. In addition, dataflow graph models can be functionally interpreted 

while Petri nets can only be used in an uninterpreted manner. 

In combining subgraph reliabilities the expressions shown in figure 3 should be 

used to account for the dataflow actor types. Collective actors are not considered in 

this paper. The following observations distinguish paths in dataflow graphs from 

the series and parallel paths in reliability networks, (a) Conjunctive and distribu¬ 

tive actors are indicative of parallel paths all of which are needed for successful 

operation. When the paths are independent of each other, the reliability of the 

graph consisting of parallel paths is obtained as the product of reliabilities of 

individual paths, (b) Disjunctive and selective actors result in more than one path, 

only one of which is needed. The reliability of the graph with such paths is obtained 

by combining the reliabilities of individual paths using the path probabilities as 

weights, (c) When the paths are not independent, the dependent structure 

determines how the reliabilities of individual actors (or subgraphs) are combined to 

get the reliability of the graph. 

The following steps can be used to determine the reliability of a dataflow graph. 

(1) Identify subgraphs. 

(2) Obtain reliabilities of subgraphs by either using other methods such as Markov 

chains, HARP, CARE III, or using this algorithm recursively. 

(3) Replace subgraphs by single actors producing a reduced graph. 

(4) Identify distinct paths. 

(5) Combine actor (subgraph) reliabilities using actor types to determine the 

reliability of each path. 

(6) Combine path reliabilities giving the reliability of the entire graph. 

Example 1. Baer (1980) used Petri nets to model the control flow in the execution 

of an instruction in a single accumulator arithmetic and logic unit. Figure 4 shows a 

dataflow equivalent of the Petri net given by Baer (also see Kavi and Bhat 1986). 
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Figure 3. Reliability expressions 
for dataflow actors. 

The actors are intentionally named by the events in order to facilitate interpreta¬ 
tion. 

Three distinct paths P,, P2 and P3 can be identified in figure 4. 
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The probabilities /?,, p2, p3 indicate the frequency of Conditional, Store and 
Arithmetic instructions, respectively (in a typical program), while pA, p5 are the 
probabilities that a condition will or will not be satisfied. Note that these are the 
probabilities defined with the output firing semantic sets. The probabilities with 

start 

Figure 4. Dataflow graph of a simple computer system. 
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input firing semantic sets are significant for collective actors only. 
The reliability of path P, is given by 

= C4R5C hR|SC21C -jRflC 13R^RtfC )9 + p^C U,Rl4C20^10^22) x 

X R l7C 2}R in^24- 

The reliabilities R{2) and R{}) of paths f\ and !\ can be determined .in a similar 
manner. Then the system reliability is given by 

R(G) = RlClR2C2RliC^(<plR^)+p2R{2)^p?R^)). 

Example 2. Here, the reliability of a bridge network is calculated using dataflow 
models. Figure 5a shows a bridge network and figure 5b shows the dataflow graph 
model of the bridge network. For representational convenience the bidirectional 
nature of the unit E is shown by using two separate actors (a5, a(f). Four distinct 
paths can be identified in the dataflow graph of figure 5b. 

P\: /()tf (/1 a 117a 31$a 7/ |, a^l ^a, | / \ ? 

P2! /(/^(/1 a | lya3fyi5/9a$1 \2a \(J\$a \f \$ 

{J 2a 2^4a J Ha ^\2a uJ\4a 11^15 

P<\' l ()U(J 2^2^ 4^ 4^ 7^ (J 10^7^ 13^ 11^15 

However, the four paths are not independent. The following dependency structure 
is assumed. 

Path P3 is used when all units are working; P{ is used only when unit C is not 
working or C is working but D is not working; P4 is used when units A and D are 
not working; P2 is used when units C and B are not working. For the purpose of 

Figure 5. (a) A bridge network, (b) Dataflow graph of bridge network. 
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convenience, the reliabilities of all actors except ax (unit A), a9 (unit B), a2 (unit 
C), aU) (unit D), a5, a(l (unit E), are set to 1. The reliabilities of all links are also set 
to 1. The reliability of the dataflow graph representing the bridge network can then 

be calculated as 

/^(Bridge Network) = R^ + R^[(l-Rc) + Rc(l ~RD)] + 

+ R^(\-RB)(l-Rc) + 

+ R^(1-Ra)(\-Rd) 

= RcRd + RaRb[(1-Rc) + Rc(1-Rd)] + 

+ RaReRd(1-Rb){1-Rc) + 

+ RcReRb( 1 — Ra) (1 — Rd) 

where R(l) is the reliability of path Pt. RA, RB, Rc, RD, RE are the reliabilities of 
units A, B, C, D, E, respectively. 

5. Concluding remarks 

The objective of this overview has been to identify various modelling techniques 
available to a reliability scientist working on computer systems. Since the time 
factor is a crucial element in the consideration of reliability, structure models alone 
are not adequate. The best approach seems to be the one in which the distinct 
characteristics of the structure are combined with a stochastic process model. 
Several models based on this approach have been introduced (e.g. CARE III, HARP, 

Dataflow). These techniques are quite recent and further investigations are in 
progress at various academic, industrial and government institutions. The dataflow 
models presented here do not incorporate time as a continuous parameter. 

The state of an uninterpreted dataflow graph can be defined by using markings 
similar to those in Petri nets. The markings can then be used to define Markov 
processes enabling the application of both discrete and continuous Markov analysis 
techniques to dataflow graph models. This is the subject of the authors’ current 
research. 

Mathematical modelling is a process of approximating the behaviour of a real 
system and therefore the ultimate choice of this model will evidently be in the 
trade-off between the realism brought to the model and its tractability. 
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Performance modelling of a fault-tolerant real-time multi¬ 
processor using stochastic Petri nets 

Y NARAHARI and N VISWANADHAM 

Department of Computer Science & Automation, Indian Institute of 
Science, Bangalore 560 012, India 

Abstract. The fault-tolerant multiprocessor (ftmp) is a bus-based 
multiprocessor architecture with real-time and fault-tolerance features 
and is used in critical aerospace applications. A preliminary perform¬ 
ance evaluation is of crucial importance in the design of such systems. In 
this paper, we review stochastic Petri nets (spn) and develop SPN-based 
performance models for FTMP. These performance models enable 
efficient computation of important performance measures such as 
processing power, bus contention, bus utilization, and waiting times. 

Keywords. Real-time control; fault-tolerant multiprocessors; perform¬ 
ance modelling; queueing networks; stochastic Petri nets. 

1. Introduction 

The principal contribution of this paper is in conducting the performance 
evaluation of FTMP, a fault-tolerant real-time multiprocessor for air traffic control, 
by constructing stochastic Petri net (spn) based performance models. This paper 
also purports to be a survey on the SPN modelling technique for performance 
evaluation. 

Performance evaluation is an indispensable part of the design of computer 
systems. There are mainly three techniques which have been extensively used in 
performance evaluation: simulation, queueing networks, and stochastic Petri nets. 
Simulation is a powerful tool but requires enormous computation to yield accurate 
performance estimates. Queueing networks and SPN are analytical modelling tools 
and are much more efficient than simulation for approximate performance 
prediction. Efficient computational methods are available for a class of queueing 
networks called product form queueing networks (pfqn) but the use of pfqn 

entails several restrictive assumptions to be made on the system being modelled. 
SPN are in this sense more versatile than pfqn. The focus in this paper is on SPN 

based performance evaluation of multiprocessors, which is now an important topic 
of research (Marsan et al 1986). In particular, we consider the ftmp system. 

FTMP (fault-tolerant multiprocessor) (Hopkins et al 1978) is a highly reliable, 
fault-tolerant, real-time multiprocessor which embodies many innovations of the 
current research in fault-tolerant computing and distributed computing. FTMP is a 

187 



188 Y Narahari and N Viswanadham 

bus-based architecture and has been proposed as the central computer for civil 
transport aircraft applications. An engineering prototype of FTMP was developed 
by the Charles Stark Draper laboratory and installed at the NASA Langley Research 
Center. It is designed to have a failure rate of the order of 10“10 failures per hour 
on ten-hour flights where no airborne maintenance is available. In view of the 
critical applications for which FTMP is used, a preliminary evaluation of its 
performance and reliability assumes tremendous importance. Shin et al (1985) have 
addressed some vital performance issues of FTMP using a closed queueing network 
(cqn) model and have derived useful performance measures such as processing 
power, bus utilization, bus contention, and waiting times, under specified work load 
conditions. In this paper, we develop performance models of FTMP based on 
generalized stochastic Petri nets (gspn). We show how the GSPN models overcome 
some of the inadequacies of the CQN model and lead to a more realistic and 
accurate description of the FTMP architecture. 

We first present in § 2, a comprehensive survey of stochastic Petri nets to make 
the paper self-contained. In § 3, we briefly review the FTMP architecture and the 
CQN model of FTMP. In § 4, we present several GSPN models for FTMP. We also 
suggest many improvements over these models and raise some theoretical 
questions for future investigation. The GSPN models presented in this paper have 
been analysed using a software package developed by us at the Indian Institute of 
Science. This package is coded in Pascal and runs on a DEC-1090 system. 

2. Stochastic Petri nets 

Stochastic Petri nets (spn) have recently emerged as a powerful modelling and 
performance evaluation tool for concurrent systems. SPN are an outgrowth of timed 
Petri nets (tpn) which in turn have evolved from the classical Petri nets. In this 
section, we present an introduction to the performance evaluation methodology 
based on SPN. We first present essential details of classical Petri nets. Petri nets 
were first proposed by Carl Adam Petri (Petri 1966). 

2.1 Petri nets 

Definition 1: Petri net. A Petri net is a quadruple (P, 7, A,M0) where 

P = {puP2, • • • • ,Pn) is a set of places, 
T = {t\,t2,.. •. ,tm} is a set of transitions, 
A C (PxT) U (PxP) is a set of arcs, 
M0 : P —> X is a mapping called initial marking that associates zero or 

more tokens to each place. Ji is the set of all non-negative integers. 
Further, m ^ 0, n 2= 0, m + n ^ 1, and P Pi T = 0. 

In a Petri net model of a given system, places represent conditions, resources or 
buffers, while transitions represent events (activities) or event epochs. Tokens 
signify the truth value of conditions or individual resources or individual buffers. 
Arcs indicate the various types of dependencies between places and transitions. 
Initial marking represents the initial state of the system. 

Generally, places are represented by circles, transitions by bars, and tokens by 
black dots or integer labels. Arcs are shown by directed arcs. 
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Definition 2: Input places and output places. If t is any transition of a Petri net 
(P, P, A, A/,,), we define the set of input places of t by 

IP(t) = {peP: (pj)eA} 

and the set of output places of t by 
OP(t) = {peP: (t,p) eA}. 

Definition 3: Enabling and firing of transitions. Let M: P —* X be a marking of a 
Petri net (P, P, A, M{)). A transition t e T is said to be enabled in marking M iff 

Af(P) 2* 1 Vpe /P(f). 

A transition t enabled in a marking M can ‘fire1. When t fires, the marking of the 
Petri net changes to M' where M' is given by 

M'(p) = M(p)- 1, p e /P(f), 
= M(/;)+l, p e OP(r), 
= M(j?), otherwise. 

We say in this case that M' is immediately reachable from M and we write 
M—UM'. 

We assume in this paper that the firing of two different transitions in a given 
marking cannot lead to the same marking. That is, 

M -iU AT and M M' => /, = h. 

Definition 4: Reachability set. Let (P, P, A,A7()) be a Petri net. A marking M' is 
said to be reachable from M if there exists a sequence of transitions by firing which 
we can obtain M' from M. Reachability of markings is a reflexive and transitive 
relation and the transitive closure of this relation is called the reachability set of the 
Petri net. 

The reachability set is denoted by R[M()\ and comprises all markings reachable 
from M() in zero or more steps. 

Definition 5: Reachability graph. Let P[M()] be the reachability set of a Petri net 
(P, P,A,Mo). The reachability graph is a directed graph (L,E) where V = R[M0] 

is the set of vertices and E is the set of directed arcs defined by 

(M\,Mf) e E iff there exists a transition T such that ——>M2. 

Definition 6: Conflicting and concurrent transitions. In a Petri net (P, P,A,A/0), 
given any two transitions tx and t2, we say f, and t2 are conflicting if 
IP(t\) n lP{t2) 0. Otherwise, they are said to be concurrent. 

The above definition can be generalized to more than two transitions in the 
natural way. Petri nets capture non-determinism through conflicting transitions and 
concurrency through concurrent transitions and can also represent elegantly the 
co-existence of non-determinism and concurrency. 

2.2 Stochastic Petri nets 

Classical Petri nets are useful in investigating qualitative properties of concurrent 
systems such as boundedness, existence/absence of deadlocks, and mutual 
exclusion. However they cannot be used for quantitative performance evaluation. 
By introducing time into the definition of a Petri net, several researchers have 
proposed timed Petri nets (tpn) for performance evaluation of concurrent systems 
(see Ramchandani 1973, Sifakis 1977, and Ramamoorthy & Ho 1980). Stochastic 
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Petri nets (spn) are a recently proposed special class of timed Petri nets in which 
transitions or places are associated with stochastic time durations. SPN with timed 
places are equivalent to SPN with timed transitions and in this paper, we shall 
consider the latter class of SPN. 

Definition 7: Stochastic Petri net. An SPN is a quintuple (P,T,A,M0,F) where 
(P, T,A,M()) is a Petri net and F is a mapping with domain R[M0] x T. In each 
MeP[M0], F associates with each transition reP, a firing time which is a 
continuous random variable. The firing times are all independently distributed. 

Note from the above definition that the random variable associated with a 
transition is in general marking-dependent. In an SPN, when a transition r is enabled 
in a marking A7, the tokens remain in the input places of t during the firing time of t. 
At the end of the firing time, a token is removed from each input place of t and a 
token is deposited in each output place of t. When a transition t gets enabled, we 
say 7 starts firing’ and when the firing time has elapsed, we say 7 finishes firing’ or 
just say 7 fires’. It is however possible that t gets disabled sometime before finishing 
firing due to the firing of a conflicting transition. Also, no two concurrently enabled 
transitions of an SPN can finish firing simultaneously. 

SPN were first proposed by Natkin (1980) and Molloy (1981) in independent 
proposals. SPN and their extensions have been used in the performance study of 
multiprocessors (Marsan et al 1984; Holliday & Vernon 1985; Marsan et al 1986), 
priority queueing disciplines in time-shared computer systems (Balbo et al 1986; 
Zuberek 1985), fault-tolerant computer systems (Meyer et al 1985; Dugan et al 
1984, pp. 507-519), and several other concurrent systems. 

Definition 8: Marking process of SPN. Let (P, T,A,MQ) be an SPN. Let Xft) 
represent the marking of the SPN at time t ^ 0 and let A(0) = M{). Then 
{X(t),t ^ 0}, is a stochastic process called the marking process of the SPN. 

The basic philosophy underlying the use of various classes of SPN in performance 
evaluation is the equivalence of their marking process to a Markov or semi-Markov 
process with discrete state space. The typical steps in SPN-based performance 
evaluation include: (1) modelling the given system by an SPN (2) deriving the 
stochastic process underlying the SPN model and computing steady-state distribu¬ 
tion of the stochastic process, and (3) obtaining the required performance 
measures from the solution of the stochastic process. All steps in the SPN based 
performance evaluation can be automated and this factor is one of the key 
advantages of the SPN. Also, SPN are graphical models of concurrency, randomness, 
and synchronization and SPN models can be constructed in a natural way from a 
description of the system components and interactions. Moreover, there are certain 
features called non-product form features which are captured nicely by SPN but 
cannot be represented by efficiently solvable queueing networks (Balbo et al 1986). 
These advantages have established SPN as a principal, modelling tool for 
performance evaluation. Several software packages have been developed for 
performance evaluation using SPN (IEEE 1985). 

In this paper, we survey two widely used classes of SPN-Exponential timed Petri 
nets (ETPN) proposed by Natkin (1980) and Molloy (1981) and Generalized 
stochastic Petri nets (GSPN) developed by Marsan et al (1984). In the sequel, the 
definitions and results presented are taken from the key papers of Natkin (1980), 
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Molloy (1981), and Marsan et al (1984, 1985). We have made some minor changes 
in notation to suit the style of the paper. Also, we use the title ‘Exponential timed 
Petri nets' because it is more suggestive. 

2.3 Exponential timed Petri nets 

Definition 9: Exponential timed Petri nets (ETPN). An ETPN is an SPN in which the 
firing time of each transition in every marking is an exponential random variable. 
Formally, an ETPN is a quintuple (P, P,A,M0,F) where (P, P,A,M()) is a Petri net 
and F: R[M()\ x T —> *31 is a function that associates with each (Mj) e F[M()] x P, a 
real number {fh is the set of all real numbers). F(M, t) for each M e R [M0] and t e T 

is to be interpreted as the rate of exponential random variable associated with 
transition t. 

The reachability set of an ETPN is the same as that of the corresponding Petri net. 
However the reachability graphs of the two are different in one respect: if Mx and 
M2 are two markings such that M2 is reached by the concurrent firing of two 
transitions tx and t2, then in the case of a classical Petri net, there will be an arc from 
M\ to M2 in the reachability graph while such an arc will not exist in the case of an 
ETPN. 

2.3a Analysis of an ETPN: Let (A"(/), t^ 0} be the marking process of the ETPN 

(P, P,A,M0,F). The marking process of an ETPN is a continuous time Markov 
chain (CTMC). Hence the theory of Markov chains can be used to analyse an ETPN. 

The CTMC associated with an ETPN has the following characteristics. 
(1) The state space of the CTMC is precisely the reachability set of the ETPN. 

(2) The state transition probability matrix (TPM) of the embedded Markov chain 
(EMC) of the CTMC is computed as follows. 

Let Mh Mj e R [M()] and suppose p,-j is the element of TPM corresponding to Mt 
and Mj. If Mj is not immediately reachable from A/,, then pq = 0. Otherwise, let /v 

t: be the transitions enabled in Mt and let 

Mj lk > Mj for some ke {1,2 

Then 

Pa = Kj I A,., 
7=1 

where A, is the firing rate of the transition p in the marking Mt. 

(3) The sojourn time of each marking M (amount of time the marking process stays 
in M) is an exponentially distributed random variable with rate equal to the sum of 
the rates of those of the enabled transitions in M which lead to a marking other than 
M on firing. 

By solving the above CTMC using standard techniques (Ross 1983), one can 
obtain the steady state probability distribution of the marking process. These 
steady state probabilities can be used in the computation of generic performance 
measures such as (1) probability that a given place has a token, (2) mean number 
of tokens in a given place, and (3) mean number of firings of a transition in unit 

time. 
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2.4 Generalized stochastic Petri nets 

Definition 10: Generalized stochastic Petri nets (GSPN). A GSPN is a quintuple 
(P, P,A,M0,F) where (P, P,v4,M0) is a Petri net, P is partitioned into two sets P7 
and Te, and P is a firing time function which gives the rate of the exponential 
random variable associated with each t e TE in each reachable marking of the 
GSPN. 

The elements of Tj are called immediate transitions and they have a firing time 
equal to zero in all markings. The elements of TE, which we call exponential 
transitions, have an exponentially distributed firing time in each marking of the 
GSPN. In the graphical representation of a GSPN, a horizontal line represents an 
immediate transition and a rectangular bar represents an exponential transition. 

2.4a Firing rules for a GSPN: GSPN markings are of two types: those in which at 
least one immediate transition is enabled are called vanishing markings (so called 
because immediate transitions fire in zero time) and those in which only 
exponential transitions are enabled are called tangible markings. The firing of 
transitions in a tangible marking is on the same lines as in etpn. In a vanishing 
marking, the following firing rules are followed. 
1. The enabled exponential transitions are not fired and only the enabled 
immediate transitions are allowed to fire. 
2. If two or more concurrent immediate transitions are enabled, all of them fire 
simultaneously. 
3. If some of the enabled immediate transitions are conflicting, only one of them is 
allowed to fire at a time, according to predefined probability distribution. Such 
distributions are called random switches and they contribute significantly to the 
modelling power of GSPN (Marsan et al 1984). 

2.4b Reachability graph of a GSPN: The reachability set of a GSPN (P, P, A, Af0, F) is 
a subset of that of the underlying Petri net. This is because of the following reasons. 
(!) Immediate transitions are given priority over exponential transitions. 
(2) Concurrently enabled immediate transitions fire simultaneously and this 
eliminates several intermediate states. 
The reachability graph of a GSPN can be constructed from its reachability set in the 
usual way. 

2.4c Analysis of a GSPN: Marsan et al (1984) have shown that the marking process 
of a GSPN is a stochastic point process with discrete state space. The marking 
process of the GSPN is assured of having a steady state probability distribution 
under the following conditions. 
1. The underlying Petri net is bounded (i.e., the number of reachable markings is 
finite). 
2. The underlying Petri net is proper (i.e., the initial marking is reachable from all 
reachable markings). 

3. The firing rates of the exponential transitions do not depend on the time of 
observation. 

Marsan et al (1984) have presented an efficient solution technique for GSPN 

satisfying the above conditions. We outline the various steps in this procedure. The 
GSPN models presented in this paper satisfy all these conditions and can be analysed 
using the following steps. 
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1. The reachability set of the GSPN is determined. 
2. The embedded Markov chain (EMC) of the GSPN has precisely the same states as 
in the reachability set. The transition probability matrix (tpm) of the EMC is 
computed. The entries in the TPM corresponding to vanishing states are computed 
using the predefined random switches and the entries corresponding to tangible 

states are obtained as in the case of ETPN. 
3. The EMC comprises both vanishing and tangible states. Since the marking 
process stays for zero time in each vanishing marking, we do not require any 
information about the vanishing states. A reduced embedded Markov chain 
(remc) that comprises only tangible states is derived from the EMC. The TPM of the 
REMC can be efficiently computed using a technique developed in Marsan et al 
(1984). Let {M0,Mi,... ,Mt} be the set of all tangible states. The TPM of the REMC 
will then be of order-(/+!). Let P denote this TPM. 
4. The mean sojourn times ra0, mi,..., mt of the tangible states M0, Mi,..., Mt, 
respectively, are computed as in the case of ETPN. 
5. If II = (tt0, tti, ..., nr), then the solution of the equations 

7T0 + IT i + . . . + 77, = 1, 

up = n, 

yields the stationary probability distribution of the REMC. 
6. If p0,pi,... ,pt are the steady state probabilities of the tangible states of the 
marking process of the GSPN, then 

t 

Pi — iTimi/ X ,mj, i — 0,1,2, — ,t. 
y=o 

7. Various performance measures of the system modelled by the GSPN are deter¬ 
mined using the above probabilities. 

2.5 A GSPN example 

To illustrate the various steps in the analysis of a GSPN, we present the GSPN model 
of a simple two-processor system where each processor acts as a standby for the 
other. In this system, there are two processors Px and P2. When a job is waiting in 
the system and both the processors are up, the job is assigned to Px. If Px fails while 
processing the job, P2 takes up the processing of the job and simultaneously, Px 
gets repaired. When P2 is processing, it may break down at which time Px may be 
down or in working condition. In the latter case, Px will process the job. A GSPN 
model that represents the interactions in this system is shown in figure 1. For this 

GSPN, 

P = {PuP2,P3,P4,P5,P6,Pl} 

T = {h,t2,t2,t4,t5,t6,t7,t8}; Pi ~ {hd 

Pe = {hdtdsdcdids) 

M0 = (0011000) 

F(M, ti+2) = r, V M e /?[M0], and i = 1,2,3,4,5,6, 

where each r, is a real number that represents the exponential firing rate of tran¬ 

sition tj. 
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\ 

Figure 1. GSPN model of a two-processor system 

in which each processor acts as the standby for 

the other. 

The function A is represented in the diagram by the directed arcs. There is a special 
arc between px and t2, called the inhibitor arc. The effect of this arc is that t2 will fire 
only if there is a token each in p2 and p3 and no token in px. This effectively gives a 
way of giving priority to t\ over t2. It is clear that t2 can fire only if tx is not enabled. 
The physical interpretation of the places and transitions of this GSPN model is 
shown in table 1. 

We now explain the various steps in the analysis of the GSPN model. 

Step 1. By tracing the evolution of this GSPN from the initial marking, we can 
generate the reachability set. There are five tangible states and 
three vanishing states M5,M6,M7. The reachability graph is shown in figure 2. The 
markings are described therein. Single circles represent vanishing states and double 
circles represent tangible states. 

Step 2. The EMC of the marking process of the GSPN is also shown in figure 2. The 
transition probabilities are labelled on the directed arcs. If there is no directed arc 
between two states, say from M, to Mr the meaning is the (/,/)th entry in the TPM is 
zero. 

Table 1. Interpretation of the places and transitions of the 
GSPN model of figure 1. 

Pi : P| available /, 

p2 : Job ready t2 

p2 : P2 available g 

Pa : P| executing the job t4 

/G : P2 executing the job t5 

Po : Pi undergoing repair /6 

Pi '■ P2 undergoing repair t7 

Pi starts executing the job 

P2 starts executing the job 

Pi finishes executing the job 

Pi fails while executing the job 

P2 fails while executing the job 

P2 finishes executing the job 
Repair of P, 

Repair of P, 
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Figure 2. Embedded Markov chain and the transition probabilities for the GSPN model of 

the two-processor system. The states with double circles are tangible states and the rest are 

vanishing states. 

Step 3. The REMC which comprises only the tangible states is shown in figure 3. By 
careful observation of figures 2 and 3,, how the REMC is obtained from the EMC 

becomes clear. The non-zero entries of the TPM of the REMC are shown as labels on 
the directed arcs of figure 3. 

Step 4. The mean sojourn times of the tangible states are given by 

m() = l/(r,+r2); mx = l/(r3 + r4 + r5); 

m2 = l/(r3 + r4); m3 = l/(r5 + r6); 

m4 = l/(ri + r2 + r6). 

Steps 5, 6, and 7 are now easy to work out and this completes the analysis of this 
GSPN model. 
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3. Queueing network model of ftmp 

In the case of ftmp, the performance measures of interest would be: real-time 
performance of the system, degree of fault-tolerance attained by the system, 
processing power, utilization of the system bus and the processors, and contention 
for various resources. Shin et al (1985) have constructed a closed queueing network 
(CQN) model for the FTMP and have obtained several of these performance 
measures by solving the CQN model. In this section, we give essential details of the 
FTMP and review the CQN model. 

3.1 FTMP architecture 

There are four major components in FTMP hardware: processing clusters (PC), 

input/output (i/o) links, system bus, and system memory. A block diagram of the 
FTMP hardware is shown in figure 4. There are mPC. Each PC consists of one or 
more pairs of a processor and a local (cache) memory. Each PC is identical in the 
sense of having the same number of processor/memory pairs. All pairs in a cluster 
work independently on a single task at any given time to improve the reliability of 
the system. The system bus is a time-shared bus which is redundant for the sake of 
reliability. Only one cluster transmits and receives data over all copies of the bus at 
a time. The system memory is a collection of dynamic RAM. These are redundant 
with the restriction that only one system memory location may be addressed at a 
given time. I/O links are components that enable data to be transmitted to or from 
external devices such as sensors, actuators, and displays. 

1 * 2 * 6 

Figure 3. Reduced embedded Markov 

chain and the transition probabilities for 

the CiSPN model of the two-processor 
system. 
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PC = processing cluster 

LM = local memory Figure 4. FMTP system architecture 

I/O = input / output (figure taken from Shin et al 1985). 

3.2 FTMP workload 

It is the workload which decides the performance of a computer system and it is no 

different in the case of FTMP. Since FTMP is used in a real-time environment for air 

traffic control, the workload it handles comprises a fixed set of tasks that belong to 
several job classes. The tasks in each job class have the same frequency of initiation 
and are despatched at regular intervals to handle repetitive functions such as flight 
control, configuration control, fault detection, fault recovery, and system displays. 

Different job-classes are assigned different priorities based on their frequency of 
initiation. A job-class gets priority over another if it has greater frequency of 
initiation than the latter. Consequently, a cluster working on or about to work on a 
task gets priority for using system resources over a cluster working on or about to 
work on a task that is initiated less frequently compared to the first. 

3.3 Operating rules 

All tasks to be executed by the system are stored in the system memory. An idle 
cluster wishing to process a task, say of class /, has to first gain control of the system 
bus. The idle cluster waits until the bus is free and proceeds to participate in a 
polling sequence, which is a decision process to determine the cluster with highest 
priority. For this, each cluster transmits its priority number over the system bus and 
a voting mechanism decides the cluster which will gain control of the system bus. If 
a cluster fails in a polling sequence, it waits until the bus is free again and initiates 
another polling sequence. 

A cluster that succeeds in a polling sequence reads the task queue for a specific 
job class from system memory and determines the next task to be executed, based 
on a FCFS policy. The cluster then reads in the selected task and all data required 
for processing the task. This data may be obtained from I/O link reads or more 
system memory reads. After obtaining all information necessary for internally 
executing the task, the cluster updates the task queue in the system memory and 
releases the bus. When a cluster completes a task, it will again request bus control 
and transmit its results to relevant addresses. It then determines which job class to 
process next and then proceeds as before. At any given time, all the clusters could 
be processing tasks simultaneously, resulting in peak performance. There is 
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degradation in performance when a cluster becomes idle, waiting for control of the 

system bus. 

3.4 Engineering prototype of FTMP 

The performance evaluation studies carried out in Shin et al (1985) and in this paper 
are on an engineering prototype of FTMP built by the Charles Stark Draper 
Laboratory and installed at the NASA AIRLAB at the Langley research centre. A 
block diagram of the hardware architecture of the prototype is shown in figure 5. 
The prototype comprises ten identical line replaceable units (lru). Each LRU 

contains a processor/cache memory module, a shared 16 K word memory, an I/O 

port, a clock generator, and related peripheral support and control circuitry. A 
processing cluster is a processor triad and triple modular redundancy is used. Upto 
three processor triads can be in operation simultaneously, utilizing nine of the ten 
processor/cache modules. The tenth module serves as a spare. With three triads 
operating simultaneously, the system functions as a 3-processor multiprocessor. 

Upto three memory triads can be formed from nine memory modules, with the 
tenth module used as a spare. Each memory triad corresponds to a single 16 K 
work region of the system memory and thus we have 48 K words of contiguous 
shared memory when three memory triads are operating simultaneously. 

Communications between the processors and the shared memory are through 
three serial system buses: a data transmit bus, a data receive bus, and a polling bus 
for resolving bus contention. The bus system has redundancy, but from the 
programmer’s viewpoint, there is only one system bus. All information processing 
and transmission is conducted in triplicate so that local voters in each module can 
correct errors. 

The software is divided into five groups-executive software, facilities software, 
acceptance test/diagnostic software, applications software, and support software. 
Depending on the frequency of initiation, these various tasks fall into three job 
classes with the nominal frequencies 25 Hz (job class 1), 12-5 Hz (job class 2) and 
3T25 Hz (job class 3). There is a dispatch algorithm (which is part of the executive 
software) which initiates these tasks at the corresponding frequencies. For using 
system resources, tasks of job class 1 get priority over those of job class 2 and job 
class 3 and tasks of job class 2 get priority over those of job class 3. 

3.5 Queueing network model of FTMP 

The model proposed by Shin et al (1985) for FTMP is a closed queueing network 
(cqn). In figure 6, we show the CQN model for the FTMP prototype. This model has 

Figure 5. Architecture of the 

engineering prototype of FTMP 

(from Shin et al 1985). 
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node 3 

Figure 6. Closed queueing network model of FTMP, developed by Shin el al (1985). 

five nodes and each node represents a customer that needs service. The tokens that 
move about the CQN model are the exponential servers moving from customer to 
customer. Various tasks are the customers while the processing clusters and the 
system bus are the servers. Since the number of servers remains the same between 
any two successive server failures, this queueing network becomes a CON. 

3.5a Assumptions in the CQN model: 1) Processing clusters and the system bus do 
not fail. This assumption effectively means that failures and reconfigurations in the 
system will result in a change in the number of tokens in the CQN. 

2) Processing time of each task is an exponentially distributed random variable. 
The processing rate of a task of job class i (i = 1,2,3) is /x;. 
3) Idle time of each cluster is exponentially distributed with rate /x7. 
4) Bus transmission time of all tasks is exponentially distributed with rate ps. 

5) Number of tasks in each |ob class is at least one. 

3.5b Nodes of the CQN model: Node 1 represents transmission activity over the 
system bus. It consists of a non-preemptive priority queue and an exponential 
transmission server. A token at this node represents a cluster that is either waiting 
to transmit on the system bus or currently transmitting. A non-preemptive priority 
queue is used to enforce the priorities among clusters based on the job classes they 
are processing. Clusters processing tasks of the same job class transmit on a FCFS 

basis. 
Node 2 represents idle clusters. This is a multiserver node with three servers 

(same as the number of clusters). A node of this type indicates that all the clusters 
may be served at this node without a queue forming. The sojourn time in this idle 
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state is exponentially distributed with rate /x7. The rate at which clusters leave this 
node is k-pj where k is the number of tokens being served by the node. 

Nodes 3, 4, and 5 represent the processing of the job classes 1, 2, and 3 respectively. 
Each of these nodes, like node 2, is a multiserver node with three servers. The rate 
at which clusters leave the node / + 2 (/ = 1,2,3) is k-pj where k is the number of 

tokens being served by the node. 

3.5c Branch probabilities: When a cluster completes transmission on the system, it 
either drops into the idle state or continues processing. The probability of the 
former event is P7 and that of the latter is Pp, with Pf + Pp = 1. When a cluster is to 
enter a processing state, there is a probability P, of its getting assigned to a task of 

class i where i = 1,2,3. Also, JP1 + P2 + ^>3 = 1- Typically, P,>P; when i<j. 
Typical values for these branch probabilities as well as the exponential service rates 
are given in the NASA report of Shin et al (1985). These parameters were obtained 
through analysing experimental data of the FTMP prototype and also by making 
reasonable assumptions. 

3.5d Analysis of the CQN model: The system state is a 5-tuple (a1,a2,a3,a4,a5) 

where at e {0,1,2,3} is the total number of tokens representing clusters at node i, 
i = 1,2,3,4,5. In the CQN model of the ftmp prototype, there are 35 system states 
[Shin et al 1985]. These 35 states are shown in table 2. These states constitute those 
of a continuous time Markov chain. Since it is possible for a token in this model to 
move from one node to any other node, the Markov chain is irreducible. Also, 
since there is a non-zero probability that a token leaving a node will return to that 
node, the Markov chain is recurrent. Thus we have a finite, irreducible, recurrent 
Markov chain and we can therefore compute the steady state probability 
distribution using classical techniques (Ross 1983). 

The following performance measures have been obtained, using the steady state 
probabilities. 

Table 2. System states of the CQN model of FTMP. 

State ax a2 03 @4 05 State a\ 02 03 04 05 

0 3 0 0 0 0 18 0 2 0 0 1 
1 2 1 0 0 0 19 0 1 2 0 0 
2 2 0 1 0 0 20 0 1 1 1 0 
3 2 0 0 1 0 21 0 1 1 0 1 
4 2 0 0 0 1 22 0 1 0 2 0 
5 1 2 0 0 0 23 0 1 0 1 1 
6 1 1 1 0 0 24 0 1 0 0 2 
7 1 1 0 1 0 25 0 0 3 0 0 
8 1 1 0 0 1 26 0 0 2 1 0 
9 1 0 2 0 0 27 0 0 2 0 1 

10 1 0 1 1 0 28 0 0 1 2 0 
11 1 0 1 0 1 29 0 0 1 1 1 
12 1 0 0 2 0 30 0 0 1 0 2 
13 1 0 0 1 1 31 0 0 0 3 0 
14 1 0 0 1 1 32 0 0 0 2 1 
15 0 3 0 0 0 33 0 0 0 1 2 
16 0 2 1 0 0 34 0 0 0 0 3 
17 0 2 0 1 0 
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1. Probability that a duster is idle. 
2. Probability that there is bus contention. 
3. Average queueing time of a customer of class i (i = 1,2,3). 
4. Mean queueing time for a typical customer. 
Also, variations of these measures due to change in system parameters such as the 
exponential service rates and branch probabilities have also been investigated. 

4. Stochastic Petri net models of FTMP 

The CQN model of FTMP, reviewed in the previous section is not adequate for the 
following reasons. 
1. The bus transmission time for all tasks is assumed to be identically distributed. 
A more realistic assumption would be to consider different exponential distribu¬ 
tions for the bus transmission times of different job classes. 
2. The CQN model does not capture the exact sequence of operations in the FTMP 
since idle clusters are shown in the model to start processing a task straightaway. In 
the actual system, an idle cluster first obtains all the programs and data 
corresponding to the next task from the system memory and I/O links and then only 
starts processing the task. 
3. The CQN model is valid only when there are no processor and bus failures. In the 
event of a failure of a processing cluster or bus, the number of tokens in the CQN 
model comes down by one and we have to solve this new CQN separately. Further, 
reconfiguration activity is not represented in the model. 
4. After finishing the processing of a task, a cluster goes through an exponentially 
distributed idle period. In the actual system, however, the idle time of a cluster is 
decided by various factors such as the rate at which jobs are initiated, the number 
of resources in the system, etc. 

In this section, we show how compact performance models can be built for FTMP 
using GSPN. In the report of Shin et al (1985), a GSPN model has been presented for 
FTMP, which is very huge, cumbersome, and intractable. The GSPN models that we 
present in this paper are however easy to understand and solve. We first develop a 
GSPN model which is an exact replica of the CQN model. 

4.1 GSPN model 1 

Figure 7 shows a GSPN model of FTMP, whose layout follows closely that of the CQN 
model of figure 6. The interpretation of the places and transitions of this model, the 
firing rates of the exponentially timed transitions, and the specifications of the 
random switches in this model are all given in table 3. Note that several of the firing 
rates are marking dependent, as in case of the CQN model. The random switches aid 
us in making decisions at various points and use the branch probabilities of the CQN 
model. The place pi of the model represents node 2 of the CQN model; places 
P3,p4,p5 represent nodes 3,4,5 respectively; and, places p7 and p8 represent node 1. 
The initial marking of this model is (300001000) which corresponds to the state 
when all three clusters are idle and the system bus is free. 

The reachability set consists of 35 tangible states and 40 vanishing states. The 
former states correspond precisely to the 35 system states of the CQN model. Also, 
the performance results obtained from these two models are identical. 
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Figure 7. A GSPN model of FTMP, modelling exactly the 

same features as the closed queueing network model of 

Shin et al (1985). 

Table 3. Description of GSPN model 1. 

P\ Idle clusters b Idling phase of clusters; rate = 

Pi Clusters ready to process tasks ^2 Cluster chooses to process a task of class 1 

Pi Clusters processing tasks of class 1 h Cluster chooses to process a task of class 2 

P4 Clusters processing tasks of class 2 U Cluster chooses to process a task of class 3 

Ps Clusters processing tasks of class 3 h Processing of tasks of class 1; rate = m{p?,)-iJLl 

Pc Bus idle Processing of tasks of class 2; rate = m{p4)-ix2 

Pi Clusters waiting to transmit on the bus h Processing of tasks of class 3; rate = m{p5)-/x2 

Px Bus transmission in progress h Cluster starts bus transmission 

Pm Cluster that has just finished a bus h Bus transmission activity; rate = fxs 
transmission bo : Cluster becomes idle after bus transmission 

bi : Cluster resumes processing after bus 
transmission 

Random switches 

1) Transitions t2j2jA with probabilities P,, P2, and P3 respectively. 

2) Transitions /,,, and tu with corresponding probabilities P, and Pp. 
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4.2 GSPN model 2 

In the GSPN model 1, we did not explicitly represent the priorities assigned to the 
clusters based on the job classes they are working on nor did we model the polling 
sequence. In GSPN model 2, which is pictured in figure 8, we capture the above 
features. The place p7 of GSPN model 1 is now replaced by three places p7ips,p9, to 
model explicitly clusters working on three different job classes. Also we have used 
inhibitor arcs to give priority to transition t8 over t9 and r10 and to transition t9 over 
t10. The places p\-pe and the transitions t\-t7 in the two GSPN models have the 
same significance. The interpretation of the remaining places and transitions is 
given in table 4. The reachability set of GSPN model 2 comprises 48 tangible states 
and 75 vanishing states. Owing to space constraints, we are not giving a list of these 
states. We can however find a mapping (that is not one-to-one) which associates 
these 48 states to the 35 states obtained in the case of the previous model. By 
analysing this GSPN model and computing its steady state distribution, we can 
directly obtain performance measures such as mean bus waiting times of clusters 
processing different job classes. This is in addition to the performance measures 
that can be computed using the earlier models. 

Figure 8. A GSPN model of FTMP, showing explicitly 

the priorities enforced in the polling mechanism. 
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Table 4. Description of GSPN model 2. 
The placesPi~Pe and transitions t\-t7 have the same description as in table 3. The phrase ‘cluster of type 

/’ means a cluster working on or about to work on a task of class i(i — 1,2,3). 

p7 : Clusters of type 1 waiting to access the bus 

pH : Clusters of type 2 waiting to access the bus 

p9 : Clusters of type 3 waiting to access the bus 

pl0 : Bus transmission in progress 

pn : Cluster, just after finishing a bus transmission 

ts : Cluster of type 1 starts using the bus 

t9 : Cluster of type 2 starts using the bus 

tw : Cluster of type 3 starts using the bus 

tu : Bus transmission activity; rate = ps 
t12 : Cluster becomes idle after finishing a bus 

transmission 
tl3 : Cluster resumes processing after finishing a 

bus transmission. 

Random switches 
1) Transitions t2, t3 and t4 with corresponding probabilities P\,P2 and P3. 
2) Transitions ti2 and tl3 with probabilities P7 and Pp respectively. 

4.3 GSPN model 3 

This GSPN model overcomes two shortcomings of the previous models. The first 
one is in representing the exact sequence of operations a processing cluster 
undergoes. In the previous models, a cluster, after the idling phase, started 
processing a selected task straightaway, instead of first acquiring ail the programs 
and data required for executing the task. Secondly, the previous models did not 
consider the individual characteristics of tasks of different job classes with the result 
that their identity is not maintained throughout the model. The present model 
overcomes these two difficulties by including a small number of additional places 
and transitions. The model is shown in figure 9, and the description of the elements 
of the model is given in table 5. It may be noted that the processing of each job class 
is now separately modelled and there is no loss of identity of job classes anywhere. 
There are now 15 places and 19 transitions and the reachability set comprises 104 
tangible states and 145 vanishing states. Using this model, we can get more detailed 
and accurate information about the FTMP system. For instance, in addition to all the 
previously mentioned performance measures, we can now compute the fraction oi 
time the bus is used by each job class and the total processing time for each job 
class. 

4.4 GSPN model 4 

We now show how failures and the subsequent reconfiguration/repair activities in 
FTMP can be modelled using GSPN. In the FTMP, there can be failure of processors, 
memories, or the system bus. We shall only consider processor failures. When a 
processor fails, its triad will attempt to complete its current job step, which it will be 
able to do unless a second failure prevents it. When the job step is complete, one of 
the other processor triads is assigned the task of reconfiguring the injured triad. If a 
spare processor is available, the injured triad is connected to the appropriate bus 
and if no spares are available, it is retired. In the latter case, the resources of the 
multiprocessor are diminished by one processing unit and the two unfailed 
members of the retired triad are now available as spares. More details about 
reconfiguration and repair can be found in Hopkins et al (1978). 
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Figure 9. A GSPN model of FfMP, 

taking care of priorities and individual 

characteristics of job classes. 

Figure 10 shows a GSPN that models reconfiguration and repair in the event of 
processor failures. The overall GSPN model of FTMP can be easily constructed from 
this GSPN. Table 6 gives the interpretation of the places and transitions of this GSPN. 

It is to be noted that multiple failures are not taken care of by this model. By 
solving the overall GSPN model, we can now obtain the performance measures in 
the presence of failures. 

In respect of modelling failures, GSPN models have one definite advantage over 
the CON model. The closed nature of the CON model depends crucially on the fact 
that there are no failures in the system. To obtain the performance of the system in 
the presence of failures using CON models, one has to obtain the performance 
contribution from each of the configurations and weight it by the relative time of 
operation. The GSPN model on the other hand, gives a direct and more accurate 
method of computing system performance in the presence of failures. 



206 Y Narahari and N Viswanadham 

Table 5. Description of GSPN model 3. 
The phrase ‘cluster of type /’ refers to a cluster that is working on or about to work on a task of class i. 

In this table, the index i takes the values 1,2,3 wherever mentioned. 

Pi Idle clusters h 

Pi Clusters ready to process ti+l 

Pi+2 Clusters of type i waiting to access the bus 

Pe Bus available ti+ 4 

Pi+6 Clusters of type i using the system bus ti+7 

Pi+9 A cluster of type i that has just finished 

using the bus ti+10 

Pi+12 Clusters processing tasks of job class i 

ti+13 

^+16 

Random switches 

t2,h,t4 with probabilities PUP2,P2, respectively 

tu and tl4 with probabilities PI and Pp, respectively 

tl2 and f15 with probabilities Pf and Pp, respectively 

r13 and t16 with probabilities P, and Pp, respectively 

Idle phase of clusters; rate = m(/71)-/a,/ 

A cluster chooses to process a task of 

class i 

A cluster of type i starts using system bus 

Bus transmission activity of cluster of 

type i\ rate = fis. 

A cluster of type i becomes idle after 

using the system bus 

A cluster of type i resumes processing 

its task after using the system bus 

Processing activity by clusters of type 

i; rate = m{pi+l2)-Pi 

4.5 Other refinements 

Here, we outline how we can construct more realistic models for FTMP. We 
consider not only GSPN but also other recent variants of SPN proposed in the 
literature. 

4.5a FTMP dispatching: In the FTMP, there is a dispatching program, part of the 
executive software, which schedules various tasks at regular intervals to handle 
repetitive applications. In the models discussed so far, processing clusters are 
assumed to have exponentially distributed idle times. This is not a reasonable 
assumption because the idle time of a cluster is decided by the arrival pattern of the 
incoming jobs as scheduled by the dispatching algorithm and by random 

i 
i 
i 

Figure 10. A GSPN representation of 

reconfiguration and repair in FTMP in 

the event of a processor failure. Note 

that the arcs from p4 to t5 and from t6 to 

p4 have multiple arcs with weights 3 

and 2, respectively. 
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Table 6. Interpretation of the places and transitions of the GSPN model of figure 10. 

Pi : Clusters processing tasks of a given job class 

p2 : Bus available 
Pi : Failed clusters 

p4 : Spare processors available 

p5 : Reconfiguration in progress 
ph : Idle clusters 

p-, : Repair of a processor in progress 

11 : A cluster finishes processing a task 

t2 : A processor fails during execution of a task 
G : Reconfiguration starts 

tA : Reconfiguration activity 

t5 : A processor triad is formed from three spare 

processors 

tb : Spares not available and hence the two 

unfailed processors become spares 

t7 : Repair activity of a processor 

phenomena such as process/cluster/memory/bus failures. Therefore by representing 
the actions of the dispatcher explicitly in the model, we obtain a more realistic 
model. 

4.5b Non-exponential distributions: In a GSPN, all the timed transitions have 
exponential distributions associated with them. It is often more realistic and more 
accurate to assume non-exponential distributions. However the analysis of such an 
SPN becomes complex since the memoryless property of the exponential distribu¬ 
tion cannot be used any more. In the literature, Molloy (1981), Dugan et al (1984), 
Marsan et al (1985), Meyer et al (1985), and Haas & Shedler (1986) represent the 
major efforts in incorporating general distributions in SPN. The FTMP performance 
models using non-exponential distributions can be analysed through the results of 
these researches. 

4.5c Deterministic and stochastic firing times: Some work has been carried cut 
recently in the analysis of stochastic Petri nets with three types of transitions: those 
which fire in zero time, those which fire in deterministic time and those which fire 
in an exponentially distributed time. Marsan & Chiola (1986) have presented a 
technique by which such an SPN can be analysed, when in each reachable marking 
of the SPN, at most one concurrent deterministic transition is enabled. 

In a real-time environment such as the one in which FTMP is used, normally there 
is a fixed set of jobs executed at regular intervals. Hence the program size and the 
I/O data will be almost the same for a given task. It is therefore more realistic to 
assume deterministic durations for processing times and bus transmission times. 
The technique devised by Marsan & Chiola (1986) can be used for analysing the 
GSPN models 1, 2, and 3 by assuming deterministic bus transmission times and 
keeping the rest of the models unchanged. However their technique cannot be used 
if we assume deterministic processing times. This suggests an interesting future 
direction for research jiamely the theoretical investigation of solutions of FTMP 

models when deterministic and stochastic firing times coexist. 

4.5d Integrated models using queueing networks and GSPN: In this paper, we have 
looked at both CON and GSPN models of FTMP. A class of queueing networks called 
product from queueing networks (pfqn) is efficiently solvable but entails several 
restrictive assumptions to be made on the modelled system. These restrictive 
assumptions such as absence of blocking, absence of synchronization, and absence 
of priorities can be overcome by GSPN models. An interesting technique has been 
developed by Balbo et al (1986), which combines the best features of PFQN and 
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GSPN and obtains integrated models for the given system. Such an integrated model 
for FTMP is worth investigation and will lead to a model more efficient than that 

based on PFQN alone or GSPN alone. 

5. Conclusions 

Stochastic Petri nets represent a recent modelling technique for performance 
evaluation of computer systems. In this paper, we have presented an overview of 
SPN and developed elegant GSPN models for FTMP, a bus-based, real-time, 
fault-tolerant multiprocessor used as the central computer in air-traffic control 
applications. We have also brought out several advantages of the GSPN models over 
a queueing network based model proposed earlier by Shin et al (1985). The GSPN 

models presented have been used for computing vital performance measures of 

FTMP, using an analysis package developed by us. 
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Abstract. We present an overview of the major problems inherent in 

reliability modelling of fault-tolerant systems. The problems faced while 

modelling such systems include the need to consider a very large state 

space, non-exponential distributions, error analysis, the need to 

perform a combined evaluation of performance and reliability, and the 

need to include the details of fault/error handling behaviour. Some of 

the proposed solutions are discussed and current tools (HARP, SAVE, 

DEEP and SHARPE) to facilitate evaluation of such systems are 

described. References are provided to many of the important techni¬ 

ques utilized in reliability, availability, and performance modelling of 

such systems. 

Keywords. Fault-tolerant systems; hierarchical modelling; Markov 

chains; performability modelling; reliability modelling; sensitivity 

analysis. 

1. Introduction 

In recent years, the demand for computing capacity has sustained a tremendously 

high rate of growth. Coupled with technological advances, this demand has spurred 

an increased interest in multiple processor and distributed computing systems. 

However, many interesting problems in the analysis of such systems must yet be 

solved in order to provide the designers and users with cost-effective tools for 

system evaluation. In addition to the need to derive measures of system 

effectiveness for a given system and its associated parameters, there is a need to 

provide techniques for selecting that set of parameter values which would optimize 

system effectiveness in a given setting. The criteria for selection may be based on 

reliability, availability, performance, cost, or a combination of these measures. We 

will use the term dependability (Laprie 1985) to mean reliability, availability or a 

combined measure of performance and reliability or availability. Many of the tools 

necessary for these analyses have their foundations in probability theory and 

statistics. 
209 
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There are three general techniques for system evaluation: testing, simulation, 
and analytical modelling. Exhaustive testing is likely to produce the most 
accurate results, but will tend to be extremely expensive. Further, the selection 
among a set of architectural alternatives during system design precludes the use of 
testing. In any case, the use of testing techniques implies the need for experimental 

design and statistical analysis of observed data. 
When the testing approach is not feasible, the system must be hierarchically 

decomposed until a level is reached where testing is feasible. Component test data 
must then be combined into a system evaluation using a simulation model, an 
analytical model, or a hybrid model. Simulation models can be more realistic than 
analytical models, but are likely to produce less realistic results than testing. Like 
testing, simulation models also require careful design of (simulation) experiments 
and statistical analysis of output data. Simulation models can be driven by either an 
event trace or by distributions of random times to the occurrence of events, in 
which case procedures to generate random variates are needed (Trivedi 1982). 
Development of simulation models can be simplified by using modelling languages 
such as Extended Stochastic Petri Nets (Dugan et al 1984, 1985) or RESO (Sauer 
et al 1982). Running time of simulation models may be reduced by using variance 
reduction techniques. 

Testing and simulation models can be expensive both to develop and to run (to 
obtain statistically significant results), and thus the alternative of analytic modelling 
can appear quite attractive, particularly if a variety of systems needs to be 
evaluated. A large number of “standard” analytic models for computer system 
evaluation are available (Siewiorek & Swarz 1982; Trivedi 1982). 

Analytic model types include combinatorial (e.g., Trivedi 1982, chapters 1-5), 
Markov (Siewiorek & Swarz 1982; Trivedi 1982), semi-Markov (Feller 1964), 
renewal (Trivedi 1982), and regression models (Trivedi 1982). Solution techniques 
include transform methods (Kulkarni et al 1986, 1987), recursive techniques, and 
numerical solution of differential (Reibman & Trivedi 1987), integral (Stiffler & 
Bryant 1982), or algebraic (Goyal et al 1986, 1987; Trivedi 1982) equations. 

Combinatorial models such as fault-trees and reliability block diagrams are 
efficient for model specification and are often efficient for model evaluation. But 
the use of these simple models may overlook important system dependencies. 
Markov models can capture such important system behaviour, but the size of a 
Markov model may grow exponentially with the number of components in the 
system. Analytic models of computer systems have traditionally incorporated 
simplifying assumptions, so the models are solvable for the desired system 
measures. The modeller has assumed that the system under study would be 
sufficiently robust such that the extracted measures would give at least order-of- 
magnitude information. 

In summary then, simulation models, combinatorial models and Markov models, 

each have their positive and negative aspects. Alone, each is inadequate for the 
modelling task of complex fault-tolerant systems. Defining and solving models for 
complex systems, in a cost-effective and accurate manner, requires the use of 
hybrid models that retain the advantages and avoid the disadvantages of each of the 
above modelling techniques. Indeed, HARP (the Hybrid Automated Reliability 
Predictor) effectively combines simulation and Markov models (Dugan et al 1986; 
Trivedi et al 1985) and SHARPE (Symbolic Hierarchical Availability, Reliability 
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and Performance Evaluator) combines the power of Markov models with the 
efficiency and parsimony of combinatorial models (Sahner & Trivedi 1986, 1987). 

The major issues in reliability modelling of complex fault-tolerant systems can be 
divided into the following categories: 
(1) Construction and solution of large models. 
(2) The need to allow for non-exponential distributions. 
(3) The need to accurately model fault coverage. 
(4) Model validation or verification (Sargent 1982) and the need to provide 
automated sensitivity of model results with respect to significant model parameters. 
(5) Efficient and accurate numerical solution methods. 
(6) Hierarchical modelling. 
(7) Combined evaluation of performance and reliability. 
In the next few sections, we will discuss recent progress made in each of these seven 
areas of research. The related and important issue of software reliability modelling 
is not discussed in this paper; interested readers may consult Goel (1983). 

2. Large model construction and solution 

Combinatorial models such as reliability block diagrams and fault-trees are 
parsimonious and can be valuable for simplifying the arduous and error-prone task 
of model construction. However, these combinatorial models are restrictive in their 
expressive power. In particular, various kinds of dependencies that exist in real 
systems are difficult, if not impossible, to express using these methods. Some 
examples of system dependencies are repair dependency (Goyal et al 1986), 
near-coincident-fault dependency (Trivedi et al 1985; Dugan et al 1986), transient 
and intermittent faults (Dugan et al 1986; Sahner & Trivedi 1986) and so forth. On 
the other hand, Markov and semi-Markov models can express complex system 
dependencies, but they are large and difficult to construct. As a simple example, a 
system model using a fault-tree with twenty basic events corresponded to a Markov 
chain with nearly 25,000 states and 350,000 transitions (Dugan et al 1986). 

One approach to large model construction exploits the parsimony of combinato¬ 
rial models for initial system specification, and later introduces interdependencies 
into an automatically generated Markov model. For example, the system model 
can be specified as a fault-tree to HARP which then automatically generates a 
Markov model that allows for near-coincident fault dependencies. SAVE (System 
Availability Estimator) allows a block-diagram-like specification and a specifica¬ 
tion of repair and other dependencies, and then automatically generates a Markov 
chain (Goyal et al 1986). 

A related approach is to specify the system model using a stochastic Petri net 
which can be automatically converted into a Markov chain under certain conditions 
(Dugan et al 1984). Petri nets appear to be gaining considerable support in this 
context. A Petri net is a directed bipartite graph whose two vertex sets are called 
places and transitions. Places contain 0 or more tokens, and the state of the net is 
represented by the number of such tokens in each place. Should all arcs into a 
transition emanate from places which contain 1 or more tokens, the transition is 
said to be enabled. Enabled transitions may fire, that is, remove 1 token from each 
input place and add 1 token to each output place. Extensions include firing time 
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distributions, probabilistic arcs, inhibitor arcs, and logic gates (Meyer et al 1984; 
Dugan et al 1985). The major advantage of such nets is the facility for the concise 

specification of concurrent behaviour. 
Yet another approach is to allow hybrid and hierarchical combinations of 

submodel types expressed in the language most appropriate for the subsystem 
being modelled. This is the approach chosen in SHARPE (Sahner & Trivedi 1986). 

The methods for solving large models can be classified into those that avoid the 
generation of large state space and those that tolerate a large state space. Two 
methods of avoiding a large state space include the exclusive use of combinatorial 
models and the specification of the model as a stochastic Petri net and then 
simulation of the net. The latter approach is used as one of the solution methods in 
DEEP (the Duke ESPN Evaluation Package) (Dugan et al 1984, 1985). A more 
interesting way of avoiding large state space is model-level decomposition. This is 
used in both HARP and SHARPE. In HARP, the coverage (or fault/error-handling) 
submodel is solved separately and the results are combined with the fault- 
occurrence model. This method has been named behavioural decomposition 
(Trivedi & Geist 1983; Trivedi et al 1985). The SHARPE approach will be described 
later in § 7. 

A large state space can be tolerated by either using sparse matrix methods so as 
to be able to store and solve large matrix problems, or by using matrix-level 
decomposition. Sparse matrix methods are used in SAVE, HARP and DEEP. Matrix- 
level decomposition has been recently studied for transient analysis of stiff Markov 
chains (Bobbio & Trivedi 1986). Yet another popular approach in connection with 
reliability/availability models is state truncation used in SAVE. 

3. Non-exponential distributions 

The use of homogeneous Markov chains implies that the holding time in a given 
state of the Markov chain is exponentially distributed. For a more accurate model 
of the system, it may be necessary to allow for non-exponential holding (sojourn) 
times. 

Non-homogeneous Markov models remove the exponential holding time 
assumption without increasing the size of the state space. But parameter 
specification for such models can be extremely difficult. The state transition rates 
are functions of global time (time from entry into the initial state), not time from 
entry into the given state. In many cases, it is only the latter information which is 
available to the modeller. Though global time dependence may be available in 
certain instances and may be entirely appropriate for some processes (e.g., failure 

processes in a non-repairable flight control system), it is rarely appropriate and 
available for an entire system (Trivedi & Geist 1983). HARP and CARE III allow the 
fault-occurrence model to be a non-homogeneous Markov chain. 

Semi-Markov models provide locally time-dependent transition rates that are 
useful for accurate specification of the system behaviour. Transient analysis of 
acyclic semi-Markov chains can be done efficiently using the convolution 
integration method. Such models can be specified and solved in SHARPE. 

Steady-state analysis of finite irreducible semi-Markov chains can be performed 

using the method of imbedded Markov chains; this has been recently implemented 
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by Phil Chimento in SHARPE. Nevertheless, transient analysis of cyclic semi- 
Markov models of sufficient complexity to capture the essential details of the 
system (e.g., 100,000 states) is difficult to solve for the desired information. 

One attractive method of Markovizing non-Markovian models is the Coxian 
method of stages (Cox 1955). Although this method tends to increase the size of the 
state space, it has been used effectively by many researchers (Costes et al 1981; 
Sahner & Trivedi 1986, 1987). Another method for handling non-exponential 
distributions is Monte-Carlo simulation, as is used in DEEP. 

4. Modelling coverage 

After a fault has occurred, the system may eventually detect it, at which time the 
system may try to recover or reconfigure itself. If successful, the system will 
continue to function in a (possibly) degraded state. The system may fail subsequent 
to the detection of a fault if the spares are exhausted. If the fault is not detected or 
if the recovery is unsuccessful then a coverage failure occurs. A coverage factor is 
used to capture this latter event (Bouricius et al 1969). It has been recognized for 
some time that the coverage probability is extremely important in determining 
system reliability/availability. 

The modelling of coverage deserves particular attention. As shown in Bouricius 
et al (1969), small variations in the coverage may contribute to large variations in 
the reliability. The estimation of the coverage (as a parameter), or the evaluation of 
the model used to describe the fault/error handling behaviour (and the insertion of 
its results into the fault occurrence model), are then critical. Coverage (after a 
failure of component j in state /) may be specified at various levels of abstraction. 
The simplest specification is a single value (may be even independent of the 
particular state /). Or a distribution of detection latency times and a probability of 
detection may be given (Wensley et al 1978). A more elaborate method allows the 
specification of a Markov or semi-Markov process [CARE II (Stiffler et al 1975) and 
CARE III (Stiffler & Bryant 1982)], or even a model of the fault/error handling 
subsystem to be simulated (as in Trivedi et al 1985, Dugan et al 1986). Other 
possibilities are the use of experimental data (Lala 1983), or of a catalogue of 
predefined fault/error handling models (Dugan et al 1986). 

When a coverage model is integrated with a fault-occurrence model, the resulting 
overall model not only becomes large but also becomes stiff in the numerical sense. 
Apart from the use of methods specially tailored for solving stiff differential 
equations (Shampine & Gear 1979; Reibman & Trivedi 1987) several approxima¬ 
tion methods have been devised. All these methods assume that actions in the 
coverage models are relatively rapid with respect to fault-occurrences, and hence, 
states of the coverage model can be replaced by a branch point. This is the method 
used in CARE II (Stiffler et al 1975) and HARP (Trivedi et al 1985) and has been 
called behavioural decomposition. A semi-Markov version of this method is 
described in McGough et al (1985), and a Markov version in a general setting is 

described in Bobbio & Trivedi (1986). Furthermore, it is possible to consider the 
time spent in the coverage model while still replacing the coverage model by a 
branch point (Dugan et al 1986). Thus, we can predict the probability of a 
near-coincident fault, or the probability that the time to recover exceeds some 
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deadline. Furthermore, this method of dealing with near-coincident faults has 
proven to be conservative (McGough et al 1985). For a detailed exposition of 

coverage models see (Dugan & Trivedi 1986). 

5. Model validation and verification 

When models are used for system evaluation, the analyst may decide to ignore 
certain features of the system, such as structure, workload, fault-occurrence 
behaviour, or its fault/error-handling behaviour. This is often done to simplify the 
model and to make it analytically tractable. The modeller assumes that the ignored 
features do not have a significant influence on system effectiveness. It is then 
important to validate the model against data collected by testing on the system 
itself, or, if such is not possible, to analyse the effects of the ignored features on the 
output of the model. Ignoring important aspects of system behaviour can result in 
significant errors in model construction and can cause model predictions to deviate 
substantially from real system performance. While it may be possible to resort to 
proof procedures to show that the model is a proper abstraction of the modelled 
system (Wensley et al 1978), normally we resort to face validity (Sargent 1982) or 
depend upon operational (input-output) validation. As part of model validation, it 
is necessary to determine if the underlying assumptions are correct by means of 
mathematical analysis or by the statistical analysis of experimental data. If the 
assumptions cannot be supported by such analyses, then either the model must be 
changed or the effect of the erroneous assumptions on the model solution must be 
bounded. 

Typical examples include distributional assumptions and independence assump¬ 
tions, whose effects may be benign, but certainly must be addressed (Osaki & 

Nishio 1980; Trivedi et al 1985). Further, it is possible for systems to start operation 
in a state other than that which is defined by the model. Some reliability prediction 
packages include the analysis of such uncertainty (Trivedi et al 1985). Another class 
of modelling errors arises from model sensitivity to variations in the input 
parameters. It is often possible to analyse the effect of such parametric errors in 
reliability prediction models (Smotherman et al 1986) and in availability models (Goyal et 

al 1986, 1987). Two distinct approaches are used in harp and SAVE. In HARP each 
parameter can be specified as a nominal value and a variation. The output of HARP 

includes a guaranteed bound on system unreliability as input parameters vary over 
their specified ranges. In SAVE, on the other hand, derivatives of the measures of 
interest (such as steady-state availability) with respect to chosen parameters (such 
as a failure rate or repair rate) are computed. 

Errors in the model solution process (as contrasted with those from model 
construction) represent another major difficulty in system evaluation. These errors 
can be classified into approximation errors and numerical errors. Approximation 
techniques are often used because an exact solution is either impossible or 
computationally expensive. Errors arise while solving complex models through 
approximation techniques. McGough et al (1985) have analysed and bounded 

approximation errors in certain reliability models. Finally, truncation and roundoff 
are two types of numerical errors, and must always be given careful consideration. 
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6. Solution methods 

Relevant measures for reliability analysis are the reliability, as a function of the 
mission time, and the MTTF (mean-time-to-failure). Since there is an eventual 
system failure, a transient analysis must be performed, until an absorbing (failed) 
state is reached. Relevant measures when studying availability are A(t) (instan¬ 
taneous availability at time t), Ass (steady-state availability), U(t) [uptime in a given 
interval (0,/)], D(t) (downtime), the MTTF, the MTTR (mean-time-to-repair), or 
Af(t) (interval availability). The model can be solved in the transient or in the 
steady-state, depending on which measures are of interest (Goyal et al 1987). 

Depending on the characteristics of the model and of the distributions, the model 
may correspond to a simple combinatorial situation (Mathur 1972; Sahner & 
Trivedi 1987), to a homogeneous Markov chain, or to a non-homogeneous Markov 
chain. We assume that the model being solved is an w-state Markov chain with 
transition rate matrix Q = [q,y] where q,j is the transition rate from state / to state /, 
qu = —'Lj^jqij and the state probability vector is P(t) = [Pt(/),...,/*„(/)]. 

First consider the steady-state solution for computing steady-state availability 
and related measures. Let it = lim P(t), assuming that the limit exists. Then 

r—> sc 

= 0, Ass = Z Ki, (i) 
i i^G 

where G is the set of states in which the system is up. For small to medium-sized 
matrices, a direct method such as Gaussian elimination is adequate; but for large 
sparse matrices, iterative methods such as Gauss-Seidel or optimal SOR (Successive 
Over Relaxation) are preferred (Goyal et al 1986, 1987). For large stiff matrices, 
decomposition methods may be utilized (Bobbio & Trivedi 1986). 

In case we are interested in the sensitivity of Ass with respect to some parameter, 
say A, we can solve the equation: 

SQ= -irV, £S, = 0, (2) 

where 

d7r/dA = S, dQ/dA = V, dAss/dX = Z *S/. 
ieG 

Methods of solving (1) are also applicable for solving (2) (Goyal et al 1986, 1987). 
For transient analysis, we are interested in solving the following system of linear 

ordinary differential equations with constant coefficients: 

P'U) = P(t)Q, P(0) = P„. (3) 

Transient analysis of acyclic models is possible in time O (n2) where n is the number 
of states (Marie et al 1987; Sahner & Trivedi 1986). Furthermore, it is often 
possible to reduce a cyclic reliability model into an acyclic one using the 
instantaneous coverage approximation (McGough et al 1985; Trivedi et al 1985). 

For cyclic Markov chains, eigenvector methods (ARIES) (Makam et al 1982) or 
Laplace transform methods (SURF) (Costes et al 1981) are relatively slbw. 
Recommended methods are high-order explicit methods for solving a system of 
ordinary differential equations such as Runpe-Kutta-Fehlbere. as used in HARP, or 
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Uniformization (also called randomization), as used in SAVE. For stiff systems, 
implicit methods such as TR-BDF2 are preferable (Reibman & Trivedi 1987). 
Alternatively, matrix-level decomposition methods can also be used (Bobbio & 
Trivedi 1986) for stiff systems. If the transition rates are not constant (i.e., if the 
Markov chain is non-homogeneous), either a numerical solution of ordinary 
differential equations (Trivedi et al 1985; Reibman & Trivedi 1987) or the 
convolution-integration technique may be used (CARE III) (Stiffler & Bryant 1982). 

In order to solve for the mttf, we solve the linear system of equations: 

tQ = -P(h MTTF = X Ti- (4) 
ieG 

We can use the same methods as used in the solution of (1). 

7. Hierarchical modelling 

We have developed a hierarchical modelling technique that makes it possible to use 
mixtures of different kinds of models at different levels in order to avoid a state space 
explosion (Sahner & Trivedi 1986, 1987). This technique differs from models such as 
HARP (Dugan etal 1986) and CARE III (Stiffler & Bryant 1982) in several ways. HARP 

and CARE III assume a specific fixed hierarchy of models geared toward modelling a 
chosen class of systems. The SHARPE technique allows complete freedom in the 
number of levels in the hierarchy, which kinds of models to use at each level, and how 
to combine the models. The basic building blocks in SHARPE are chosen from seven 
model types. These building blocks can be combined hierarchically in a very flexible 
manner, with the number and types of models at each level, and the particular infor¬ 
mation carried between the models left up to the modeller. Components in each 
model type are assigned cumulative distribution functions (CDF) that are symbolic in 
the time variable t. The analysis of each model type is carried out symbolically, 
resulting in another CDF that is symbolic in t. The interpretation of the component and 
result CDF is left up to the modeller. 

The following seven model types are allowed in SHARPE: 

(1) series-parallel reliability block diagrams; 
(2) fault-trees without repeated nodes; 
(3) acyclic Markov chains; 
(4) irreducible cyclic Markov chains; 
(5) cyclic Markov chains with absorbing states; 
(6) acyclic semi-Markov chains; 
(7) series-parallel directed (acyclic) graphs. 
Block-diagram and fault-tree models are specialized for modelling reliability and 
availability. Each component is assigned a cumulative distribution function for the 
time-to-failure of the component. The system is then analysed'to obtain the CDF of 
the time-to-failure of the system as a whole. The other model types can be used to 
model performance as well as reliability. 

Markov and semi-Markov chains that have absorbing states are analysed for the 
CDF of the time-to-absorption. If such a chain is acyclic, the analysis also produces 
the probability of ever visiting each state. Irreducible cyclic Markov chains are 
analysed for the steady-state probabilities of being in each state. 
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The series-parallel graph submodel is the most general model. In this model, the 
nodes represent activities and the arcs represent precedence constraints placed on 
the activities. Each node in the graph is assigned a CDF, and the graph submodel is 
analysed for the CDF of the time-to-completion for the appropriate events in the 
graph. 

The different types of submodels can be combined hierarchically by using all or 
part of the solution to one submodel as part of the specification of another 
submodel. One method for combining submodels is to assign the CDF from the 
result of a submodel as the CDF for a basic event in some other model. This method 
of combining submodels allows us to efficiently analyse large systems whose 
“badness” (non-series-parallel structure) is contained in a subsystem * or a set of 
subsystems, with the remaining portions of the system being “well-behaved”. We 
can extract the non-series-parallel portions of the overall structure and pay the 
price of 2" states to analyse them exactly using Markov chains. Then, we use the 
results from those portions as the CDF of basic components in the remaining graph 
and use a combinatorial solution method to analyse the system. This decomposi¬ 
tion/aggregation results in an exact solution. 

A second way to combine submodels is to pass information from one submodel 
to another by means of one or more of the various scalar (as opposed to CDF) 

quantities produced during the analysis of a submodel. SHARPE makes available the 
mean and variance of each CDF produced by the analysis of a system and the value 
of each CDF at specified values of t (including t = 0 and t = °°). SHARPE also makes 
available the probability of visiting a state in a Markov or semi-Markov chain. 
These scalars can be used in another model as elements in the expressions that 
specify probability values, transition rates, and the parameters of distribution 
functions. This mechanism allows for the expression of aggregation/approximation 
within the SHARPE framework. 

8. Combined evaluation of performance and reliability 

The separation of reliability and performance evaluation of a computer system is no 
longer appropriate for systems with graceful degradation capabilities. Combined 
evaluation of performance and reliability of such systems is an active area of 
research. 

Most current models for the combined evaluation of performance and reliability 
can be classified as either combinatorial, semi-Markov reward processes, or 
queueing systems subject to failure. These models often differ in the intended 
measure of system performance. Measures derived using combinatorial methods 
include the probability of catastrophic failure during the execution of a program 
and the distribution of elapsed time of a program (Castillo & Siewiorek 1980; Duda 
1983; Krishna & Shin 1983; Kulkarni et al 1986, 1987; Sahner & Trivedi 1987). 

For example in SHARPE, a precedence graph model of program can be specified 
in which each module can be assigned a possibly defective distribution function. 
This allows us to model the possibility that the module will not complete due to a 
software/hardware failure. SHARPE then computes the probability that the program 
(precedence graph) as a whole does not complete and the distribution function of 
the time-to-complete in case it does (Sahner & Trivedi 1986, 1987). 
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In Markov and semi-Markov models, we may attach a reward rate to each state 
obtaining a (semi)Markov reward model. Thus if r, is the reward rate in state /, then 
for a stochastic process {X(t)\t\ >0}, we define the accumulated reward Y(t) in the 
interval (0,t) as Y(t) = fbrx(T)dr. Measures considered by the semi-Markov 
reward models are moments and the distribution of the accumulated reward Y(t), 

until time t; and reward until system failure, Y(°°). We have recently shown that 
task-oriented models (the former) and resource-oriented models (the latter) are 
duals of each other (Kulkarni et al 1986, 1987). The measures evaluated by 
queueing models include the program response times, queue lengths, and 
utilizations of various servers (Baccelli & Trivedi 1983, 1985; Gaver 1962; Mitrani 
& King 1983 ; Nicola et al 1986). 

Existing models can also be divided along the lines of approximate versus exact, 
capacity-based versus throughput-based versus response-time based, no resource 
contention versus resource'contention, and transient versus steady-state. Early 
models for the evaluation of fault-tolerant systems were capacity-based. For 
instance, Beaudry (1978) and Osaki & Nishio (1980) assumed that the system 
performance was proportional to the number of available processors. Beaudry 
considered a Markov reward model, while Osaki and Nishio allowed general 
distribution of times-to-failure using a semi-Markov reward process. Both these 
efforts considered the accumulated reward until failure. 

Other models have allowed for nonlinearities inherent in system performance 
measures due to queueing effects. Many of these efforts have taken advantage of 
the fact that the times-to-failure and times-to-repair are usually several orders of 
magnitude larger than the time to complete the execution of a program. Therefore, 
the model can be solved by decomposing system behaviour into submodels and 
later combining the results of the submodels. These models can be considered to be 
Markov reward processes. For instance, Meyer (1982) considered an Ml Min queue 
with finite buffer as a performance submodel to compute the steady-state 
throughputs (or reward rates) in different structure-states. He then combined these 
with exponential times-to-failure distributions for the processors and buffers to 
compute the distribution of the accumulated reward (or the number of unit-time 
jobs completed) in the bounded utilization period [0, t]. Such models are further 
discussed in Kulkarni et al (1986, 1987) and computational techniques based on 
double transform inversion which are applicable to repairable, as well as 
non-repairable systems, are described. 

Several authors have considered exact models which include resource-contention 
(queueing), program characteristics, and failure and repair processes. Gaver (1962) 
considered a single server M/G/l queue with constant failure rate and generally 
distributed repair times. He derived an expression for steady-state average 
response time allowing for different types of failure interruptions. Mitrani & King 
(1983) studied M/M/n degradable systems with constant failure and repair rates. 
Assuming perfect coverage, they provided a numerical procedure for computing 
the steady-state average response time. In Baccelli & Trivedi (1983), we considered 
a two-processor standby-redundant system with a Poisson arrival stream of jobs 
and a general service-time distribution. We also provided a numerical procedure to 
compute the average response time.. In Nicola et al (1986) we carried out queueing 
analysis of an M/G/l system in which the server was subject to failures and repairs 

and the job in service could experience a loss of work. In Baccelli & Trivedi (1985), 
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we carried out the transient analysis of an M/Gl 1 queue in which there is a hard 
deadline on job response times. 

9. Conclusion 

We have presented a brief overview of probabilistic models used in the analysis of 
fault-tolerant multiple processor systems. For a more detailed study, the reader is 
referred to several books (Osaki & Nishio 1980; Siewiorek & Swarz 1982; Trivedi 
1982) and survey papers (Barlow & Lambert 1975, pp. 7-35; Geist & Trivedi 1983; 
Goel 1983; Goyal et al 1987; Laprie 1984; Trivedi et al 1980; Mulazzani & Trivedi 
1986). 

This research was supported in part by the Air Force Office of Scientific Research 
under grant AFOSR-84-0132, by the Army Research Office under contract 
DAAG29-84-0045 and by the National Aeronautics and Space Administration 
under grant NAG 1-70. 
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A fault-tolerant computer system for India’s satellite launch 
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Abstract. The on-board computer (OBC) systems that are planned to 
be used in India’s forthcoming launch vehicle programmes, viz, the 
Augmented Satellite Launch Vehicle (aslv) and Polar Satellite Launch 
Vehicle (PSLV) exercise total control over the vehicle during its flight, 
carrying out complex real-time computations related to vehicle naviga¬ 
tion, guidance, autopilot and the generation of mission critical event 
commands. The success of the country’s launch vehicle missions, 
therefore, depends to a very large extent on the reliable operation of the 
OBC. To enhance the reliability of such a computer system, fault- 
tolerant design techniques have been resorted to and the system after 
thorough testing is now ready to be flown on the ASLV. This paper 
highlights the design of such an OBC mainly from the points of view of 
the fault-tolerant methods incorporated. The relevance of fault- 
tolerance to critical flight computers is first discussed. This is followed 
by a presentation of possible fault-tolerant configurations and the 
considerations that led to the choice of the present system. A brief 
description of the OBC system architecture and the methods of testing 
that ensure its reliable operation follow. The paper concludes with an 
assessment of the present system and possible future improvements. 

Keywords. Satellite launch vehicles; on-board computer; fault-toler¬ 
ant system; closed loop guidance; redundancy; microprocessor. 

1. Introduction 

India’s Augmented Satellite Launch Vehicle (ASLV) aims at enhancing the 

performance of the earlier Satellite Launch Vehicle (SLV) series of launchers by 
improving its specifications in two distinct but significant areas. Payload capability 
is sought to be increased from 40 kg in the SLV case to 150 kg for the ASLV by using 
two solid-propellant based strap-on boosters. Another very important technologic¬ 

al innovation that is planned to be introduced in the ASLV is the use of a closed loop 
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guidance system upto the third stage. This will lead to a more predictable orbital 
specification of the satellite as follows: 

altitude 400 km ±50 km, 
inclination 136° ±0-5°. 

The fourth stage of the ASLV will be unguided but spin stabilized. The orbital 
specifications laid down for the next generation Polar Satellite Launch Vehicle 
(PSLV) is as follows: 

altitude 900 km ±15 km, 
inclination error less than 0-1°. 

This would be achieved among other things by extending the closed loop guidance 
to the point of injection of the satellite. Thus it can be appreciated that the use of a 
closed loop guidance scheme results in a more accurate orbit for the satellite. It 
may be noted that the SLV had a much simpler open loop guidance scheme in which 
no attempt was made to correct for the deviations from the nominal trajectory of 
the rocket due to various disturbances both internal and external to the rocket’s 
propulsion system. In such a scheme, the vehicle’s pitching schedule is predeter¬ 
mined and stored on board the rocket. However, the desired orbit can be achieved 
in such a case if all subsystems such as propulsion, control etc. perform as per their 
nominal specifications and the external forces due to aerodynamics and wind are as 
per prediction. The actual subsystem performances achieved in flight may deviate 
from the nominal specifications and this will result in a substantial deviation of the 
orbit. Such a situation is clearly not acceptable for the ASLV and PSLV missions. A 
closed loop guidance scheme which can modify the existing pitch programme and 
generate a new steering schedule during flight becomes necessary. This must take 
care of performance dispersions in flight and use navigation information to correct 
the pitching sequences in order to obtain the specified orbit. The successful 
implementation of a closed loop guidance scheme hinges to a very large extent on 
the reliable operation of the on-board computer (OBC) system. The OBC commands 
total control over the vehicle during its flight, cafrying out complex real-time 
computations related to vehicle navigation, guidance, autopilot and the generation 
of mission critical event commands. In addition, the OBC is required to participate 
in the prelaunch operations of on-board sensors calibration, count down 
operations, alignment of the inertial reference frame etc. (Basu et al 1985). As has 
been witnessed in the major launch vehicles abroad, the flight management role of 
the OBC is steadily growing both in sophistication and complexity (Cooper & Chow 
1976). The present trend is to delegate more and more functions to the computer. It 
is well-established that many system level problems that appear late in the 
development cycle resort to software solutions and hence increase the load on the 
OBC. Our experience at the Vikram Sarabhai Space Centre (VSSC) is in line with the 
above observation. 

2. Choice of the OBC configuration for ASLV 

The considerations which guided the choice of a suitable OBC configuration for the 
ASLV can be broadly classified into two major types and are discussed below. 
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2.1 Choice of the devices 

The primary constraints on any OBC system are low power, weight and volume, and 
high reliability. Weight and volume of the hardware should not exceed the limits 
beyond which it becomes difficult to integrate the computer into the launch 
vehicle’s equipment bay. Reliability is perhaps the single most important factor 
which affects the computer architecture in several ways. In most cases only proven 
(5-10 years old) technology can be used to reduce the chance of unexpected failure 
modes. Parts are extensively screened and tested, driving their cost to four or five 
times those on the commercial market. The idea is to prevent any defective or weak 
components from breaking down and causing mission failure. This is the traditional 
fault intolerant approach (Avizienis 1978). In the case of the OBC designed at 
VSSC, it was decided to use components which can be screened in-house. This is 
also consistent with the overall policy of using parts which are not necessarily the 
latest available on the commercial market. Components to be used for critical 
on-board applications must conform to stringent military standards, must have a 
good record of use in similar applications and must pass through the rigorous 
screening tests that they would be subjected to at the components screening 
laboratory of VSSC. It is important to appreciate that the components chosen for 
any on-board application at a given point in time would always be inferior in their 
functional capabilities to devices which have been introduced more recently. This is 
perhaps the most important and cardinal principle which overrides any other 
conflicting design requirement. One of the Consequences of this consideration was 
the choice of the microprocessor and memory devices. Motorola’s 6800 micro¬ 
processor may seem to be too primitive a choice today. However, at the time of 
finalizing the ASLV-OBC configuration in the early eighties, this was the only device 
that could satisfy all the above criteria. Similarly, the 2114, a 1 Kx4 static RAM 

was chosen as the memory device because of its long and successful record of use. 

2.2 Choice of a suitable redundancy management scheme 

When the above well-known methods are feared to be inadequate, fault-tolerant 
system design is an effective method of improving system reliability. However, 
designing a practical system is an involved task and often implementation and 
validation difficulties may defeat its very purpose. Though reliability prediction 
studies are often resorted to as a means of arriving at ballpark figures of Mean Time 
Between Failures (mtbf) of OBC systems, such studies are seldom used as a 
yardstick of choice. This is because for launch vehicles, the number of computers 
made and used are so small that statistics is not of very great relevance. In the case 
of a practical time bound project such as the ASLV, it is important to define clearly 
the goals of fault-tolerance and the methods of validation. Such decisions are at 
best subjective but are arrived at through an intensive review process within the 
VSSC in which the views of the various multidisciplinary research groups involved in 
the project are sought and debated by a peer group of experts including the 
designers. In our case, the main design objective set was that redundancy must be 
built into the system such that all single point failures are tolerated. Given the 
single point fault-tolerant requirement of the system, there remain a number of 
possible options for implementing fault-tolerance through the use of various 
redundancy management schemes. 
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2.2a Triple modular redundancy : In this scheme computers or computer modules 
are run in triplets and their corresponding outputs voted for error correction. This 
is a form of masking redundancy used in the Saturn V guidance computer. The 
masking function employs redundancy to ensure that the effect of a fault is 
completely contained within a system module. The size of a module is selected to 
optimize its failure rate. As long as the redundancy is not exhausted, the fault is 
concealed within the module and no symptoms whatsoever appear on the outputs. 
The use of this form of redundancy is based on the assumption that failures of the 
redundant modules are independent - an assumption that is difficult to justify 
when the hardware circuits are packaged within the same mechanical enclosure and 
share the same power supply and voter circuits. Additionally, triple modular 
redundancy (tmr) architectures are awkward owing to their high cost in terms of 
both weight and volume which would lie between 3 and 4 times the cost of a simplex 
non-redundant system. The testability of a TMR system is poor owing to the 
masking of all single faults during even the testing phase. This absence of an 
indication when a redundant module finally fails coupled with the complexity of the 
hardware and the tight synchronization requirements of the different modules 
made it imperative for us to drop this scheme and look for a simpler alternative. 

2.2b Duplex with comparison : Here the computers are run in pairs comparing 
their outputs for fault detection. If a disagreement occurs, software diagnostic 
routines identify the faulty unit and it is either replaced or disabled. Even though 
the complexity of this type of system is significantly less than that of the TMR type, 
it still calls for synchronous operation of the two systems on whose outputs the 
comparison is to be made. The main limitation of this approach is the need for 
recovery software to remain operational even in the presence of faults since the 
software controlled recovery can be initiated only upon the detection of a fault. A 
simpler and more implementable choice is discussed next. 

2.2c Dual processor with hot standby : In this scheme two independent and 
identical computing systems with concurrent internal fault detection hardware 
perform identical functions. If one of the computing systems fails, its checking 
hardware disables it and the other system continues the computations. The system 
degrades from a dual to a single one. It can be appreciated that with the single point 
failure goal set for our system, this scheme is the most easily realizable scheme and 
was hence chosen as the basis on which the OBC configuration for ASLV was frozen. 

It may be noted that a variation of this scheme in which one of the computing 
systems remains unpowered or in a cold standby mode until the i lain computer fails 
seems to be attractive from the point of view of power consumption. However, 
such a system calls for initializing and restarting of the program on the cold standby 
hardware within an identifiable and measurable period of time. As launch vehicle 
navigation and guidance require continuous and uninterruptible service in a very 
stringent real-time environment, this alternative was dropped in favour of the hot 
standby mode in which no such break of computations becomes necessary. 

3. Architectural attributes of the OBC 

Having decided on the dual processor with hot standby as the basic method of 
:ating all single point faults, it is worthwhile examining the other architectural L ^ sy 
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attributes of the OBC which make it suitable for the given application. Since the 
dominant natural frequencies of the stabilization and control system of a launch 
vehicle are considerably higher than those of a guidance and navigation system, a 
higher computing speed is required of the OBC for the autopilot algorithms. 
Typically two to four computing cycles per second are sufficient for the ascent 
navigation of a launch vehicle, while 50 computing cycles per second may be 
required for flight control. Furthermore, the provision of digital flight control by 
the OBC makes possible the use of digital filtering techniques to enhance the 
vehicle’s stability. With the above considerations in mind, the main computing 
cycles for the OBC have been split into two and are known as: 

Major cycle - every 500 ms. The functions of navigation and guidance are carried 
out once every major cycle. 
Minor cycle - every 20 ms. The functions of vehicle control, digital filtering and 
self-check are implemented every minor cycle. 

The architecture which supports this type of cyclic, iterative computations is 
based on a distributed and multiprocessing system. It consists of the following 
attributes: 

• a few basic building blocks or modules; 
• a parallel bus for intraprocessor data flow; 
• a serial bus for interprocessor data flow; 
• a set of standard software modules. 

The computational load on the OBC in terms of execution time, memory 
requirements and periodicity of computations has been estimated and is presented 
in table 1. 

From these estimates, it was realized that the major number crunching 
operations should be carried out in a central processing system known as the 
Navigation, Guidance and Control Processor (ngc). Since the NGCP contains vital 
state information, viz, flight time, velocity, position etc., loss of which would lead 
to mission failure, it is essential that the NGCP be isolated electrically from its 
environment to as large an extent as is possible. Thus, it was decided that the basic 

Table 1. Computational load on OBP. 

Function 

Execution 

time 

(ms) 

Periodicity 

(ms) 

Memory 

(K byte) 

Navigation 52-0 500 4-5 

Guidance 20-0 500 5-0 

Digital autopilot 9-5 20 2-5 

(includes 3 sixth 
order filters) 

Vehicle sequencing 0-5 20 0-5 

Telemetry 2-0 20 0-5 

Serial input/output 4-0 20 — 

(maximum) 
Self-check 1-5 20 0-8 

Operating system 0-1 20 5-0 
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tasks of data acquisition and distribution i.e. input/output would be carried out by 
separate stage processor modules (spm) located close to the sensors and actuators 
in the various stages of the rocket. The transmission of data between the NGCP and 
SPM would be via optically isolated serial data links. This eliminates the necessity of 
running sensitive analog signal lines over large distances and the serial data links 
lend themselves to error detection and retry procedures. The use of optical 
isolators results in the elimination of ground current loops and the consequent 
improvement in reliability. The overall architecture of the OBC system for ASLV is 
shown in figure 1. The NGCP receives its input sensor data via an optically isolated 
serial link from the Navigation Electronics Module Processor (NEMP). The NEMP is 
essentially another SPM and derives its name from the fact that it is located close to 
the navigation system sensors. The real-time computations of navigation, guidance 
and digital autopilot which require extensive mathematical operations are 
programmed into the NGCP. The outputs of the NGCP are passed on to the SPM 

again via a serial data link. Both the NGCP-NEMP and NGCP-SPM links operate at 500 
KBPS and as already stated use a protocol that supports error detection and retry 
procedures. The function of the SPM is to receive the attitude error commands and 
vehicle sequencing event commands from the NGCP, decode these commands and 
then distribute them to the appropriate sequencing relays and stage control plant 
interfaces (CPIF) via the selection logic (SL). The entire computing chain consisting 
of NEMP, NGCP and SPM is duplicated as one main and one hot standby. A hardcore 
circuit in the NGCP of the main chain in conjunction with the self-check software 
and the serial link protocol continuously monitors the health of the entire chain and 
in the event of a detectable malfunction anywhere in the chain, alerts the SL. Under 

Figure 1. On-board computer configuration for ASLV. 
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normal fault-free operations of the OBC, the inputs of the SL are connected to the 
outputs of the main chain. When any malfunction is detected, the SL inputs switch 
to the outputs of the hot standby chain thus ensuring continued correct operation of 
the system. The operation of the hardcore is analogous to the working of a 
watchdog timer (Torin 1976). The hardcore receives a synthesized alive message 
from the NGCP self-check software every 20 ms. If the hardcore misses an alive 
message, then the NGCP has either detected a permanent failure in the main chain 
(viz, the failure of the NGCP-NEMP link) or the NGCP has developed an internal 
failure which prevents it from sending an alive message. The hardware faults 
covered by the self-check software include failures in both the NGCP-NEMP and 
NGCP-SPM links, memory faults and faults in the multiply/divide circuit. Apart from 
these, the various application software modules carry out data consistency checks 
at various points in the algorithms (Dasgupta & Ghose 1986). 

If these checks indicate erroneous execution of the programs either due to bad 
data getting into the system via the sensors or due to wrong flow of control which 
has remained latent in the software and which has not been uncovered in any 
previous simulation test, an indication is given to self-check software. The 
self-check software in turn refrains from sending an alive message to the hardcore, 
initiating a switchover to the hot standby chain. A detailed tabulation of the 
different fault types covered by the system, i.e. fault types which cause switchover 
to the hot standby chain, is given in appendix A. 

There are two more serial links connected to each NGCP. One of them is 
connected to the checkout (C/o) computer, and is used for all preflight operations 
like automatic checkout, flight initialization, alignment of inertial platform etc. 
under command from a ground-based checkout computer. The other serial link is a 
unidirectional one and is used for telemetering flight data. It may be noted that for 
the ASLV mission the NGCP, SPM and SL are all located in the equipment bay (eb) on 
top of the third stage (S3) of the rocket. To meet the real-time computational load 
presented in table 1, the NGCP uses two M6800 microprocessors working in parallel 
in a multiprocessing mode. A global memory of 1 K byte capacity is used for 
synchronization and data flow. Figure 2 shows the block diagram of the NGCP. Each 

Figure 2. Block diagram of NGCP. 
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processor has in addition to the common global RAM, its own local memory, serial 

I/O ports and a micro-programmed 16-bit hardware multiply/divide unit. The latter 
performs a 16-bit multiply/divide operation including operand fetches from the 

local memory in 50 microseconds. 

3.1 System software 

The primary aim of the OBC system software is to manage and coordinate the 
different processors/tasks and system resources in real time. The real-time 
executive (rex) is designed to incorporate the following features. 

• Schedule execution of different programs/tasks in real time; 
® maintain the real-time clock to synchronize different functions/tasks; 

® handle all I/O operations; 

® keep a watch on the system health by means of a self-check routine; 
• receive and execute commands from C/O computer during preflight operations. 

To handle the above mentioned functions, REX has the following modules. 

• COP - command processor and communication handler; 

• TASH - task scheduler and handler; 
® SCRD - self-check routines and diagnostics. 

The OBC-REX has 3 basic modes of operation viz. monitor mode, preflight mode 
and flight mode. The monitor mode which is a non-real-time mode is used for 
loading data from the C/O computer and for testing the different hardware modules of 
the OBC under command from the C/O computer. The preflight mode and the flight 
mode denote that the OBC system’s operating environment is real-time and that the 
OBC is executing tasks in the preflight and flight phases of the mission respectively. 

The COP accepts commands and associated data through the serial links and 
manages the serial bus protocol. The TASH is the overall supervisor that maintains 
the real-time, keeps track of the tasks, gets them executed in the correct sequence 
and maintains the required task synchronization. The SCRD is used to check the 
health of all the hardware elements of the system in real-time. This package in 
conjunction with the hardcore circuit is responsible for alerting the SL to carry out a 
switchover from the main to the standby chain in the event of any failure in the 
main chain. 

4. Methods of validation 

The successful deployment of the OBC in a launch vehicle calls for satisfying 
stringent functional test requirements coupled with the need for simulation of its 
intended flight functions in a closed loop guidance environment (Basu et al 1986). 
Thus the tests on the OBC can be classified into two broad types. 

4.1 Static tests 

The static tests help in checking each functional module of the OBC like memory, 
multiply/divide and input/output ports. 
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4.2 Dynamic tests 

The dynamic tests call for initiating the simulated flight mode operation of the OBC. 

Under this mode, the inputs to the NGCP corresponding to the nominal flight 
trajectory of the ASLV mission are simulated in real-time from a ground-based 
computer controlled test bed. The outputs of the NGCP flowing out of the digital 
telemetry data link are stored in the disk memory of the test bed for further 
analysis. In addition, the analog outputs of the SPM are recorded on an ultraviolet 
recorder. 

While the static tests fulfil the objective of checking the proper functioning of 
each hardware module of the OBC, the dynamic tests help in establishing the 
validity of the total flight software and evaluating it against mission requirements. 
The dynamic test bed for the OBC also provides a very powerful tool for evaluating 
the fault-handling capabilities of the system in the following manner. 
(a) It is possible to perturb the nominal simulated input profile in various ways so 
as to create different error conditions which the application software modules can 
detect and then initiate a switchover through the self-check software. 

(b) It is possible to simulate hardware failures like power supply failure, serial link 
faults between NGCP-NEMP and NGCP-SPM during a nominal simulation run and 
monitor its effect on the hardcore circuit. 

5. Conclusions 

In this paper, an attempt has been made to establish the importance of the reliable 
operation of the OBC so that it is possible to attain the accurate orbital 
specifications that India’s satellite launchers ASLV and PSLV aim for. The choice of 
a suitable redundancy management scheme that can be implemented and tested 
within a given time frame has been presented, followed by a brief description of the 
architecture that has been realized for the ASLV mission. As has been explained, 
the choice of components, which has a direct bearing on the architecture, was made 
in the early eighties. Consequently there exists a technological hiatus between the 
present day state-of-the-art and the OBC for ASLV. This is sought to be reduced for 
the PSLV launch, scheduled in a few years from now in the following manner. 
• Use of 16-bit microprocessor M68000 and higher density memory chips which are 
now available to military standards. This would not only increase the computation¬ 
al capability of the OBC but also its reliability due to the elimination of about 30% 
of the hardware which the multiply/dividp circuits presently occupy. 
• Use of application-specific integrated circuits based on C MOS gate arrays. 

• Use of high density packaging techniques which are now being qualified for 
launch vehicle environment. 

The basic architectural attributes would remain the same in that the processing 
power would be distributed among various functionally autonomous computing 
modules, physically separated from each other but communicating through 
optically isolated serial links. There would be two computing chains, one main and 
one hot standby. However, provision is being made in the design for cross¬ 
strapping between the two chains so that any computing module of each chain 
could receive inputs from its preceding computing modules of both the chains. 
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While this would increase the fault-handling capability of the overall system, it 
would call for a tighter Synchronization between the two chains. This would 
increase the complexity considerably, which may not be justified but for the 
enhanced fault-tolerant capability of the system. The pros and cons of the 
cross-strapping concept are now being debated at the various technical review fora 
of VSSC and it may take some more time before a final view emerges. However, 
these relate to finer system refinements. The basic method of providing fault 

tolerance for the ASLV-OBC configuration, viz. dual processor with hot standby, 
would continue to hold good for the PSLV-OBC also. 

Appendix A. Fault types covered directly or indirectly by the self-check software. 

Fault type Comments 

Serial links 
NGCP-NEMP 

NGCP-SPM 

Local bus of NGCP - 2 
numbers 

Global bus of NGCP 

Multiply/divide circuit 

RAM 

Clock 

Power supply 

NGCP self-check software monitors the proper 
functioning of both these links every minor cycle. 
Thus any failure in either of these two links can 
be easily detected to cause a switchover. 

Any fault in the local bus would cause the pro¬ 
cessor to “hang”, a situation which would prevent 
the ^elf-check software from being invoked peri¬ 
odically. The absence of the periodic generation 
of the “alive” signal generated by the self-check 
software will cause a switchover. 

The self-check software reads and writes two 
fixed and complementary patterns in a known 
location of the global memory every minor cycle 
and checks for correct execution. 

Certain fixed worst case patterns are tested for 
correct execution by the self-check software 
every minor cycle. This is a direct check. Data 
consistency checks carried out at various points in 
the different application software modules would 
detect faults not covered by the fixed patterns. 

Two fixed and complementary patterns are writ¬ 
ten and read for correct execution every minor 
cycle by the self-check software. RAM faults not 
covered by the above direct checks would be 
detected by the data consistency checks in the 
application software modules. 

Any fault in the clock would prevent the pro¬ 
cessor from running correctly. This condition 
results in the stoppage of the periodic generation 
of the “alive” signal to the hardcore. 

Any power supply fault is detected in the same 
manner as in the clock above. 
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NEMP failure 

SPM failure 

NGCP self-check software interrogates the NEMP 

every 20 ms. If the NEMP is healthy it responds to 
this interrogation from the NGCP by carrying out 
its own self-check and transmitting back an ap¬ 
propriate acknowledge-code. The absence of this 
acknowledge-code indicates to the NGCP self¬ 
check software that the NEMP is faulty. 

Same as in the NEMP failure above 
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Fault-tolerant spacecraft attitude control system 
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Abstract. Spacecraft perform a variety of useful tasks in our day-to- 
day life. These are such that spacecraft need to function properly 
without interruptions for 7 to 15 years in space without any mainte¬ 
nance. Though most spacecraft have redundant systems to serve as 
back-ups in case of failures, they greatly depend on human assistance 
through ground stations for failure analysis, remedial actions and 
redundancy management, resulting in interruption in services rendered. 
There is, therefore, need for a fault-tolerant system that functions 
despite failures and takes remedial action, without human assistance/ 
intervention, autonomously on board the spacecraft. 

Commonly used techniques for fault-tolerance in computers cannot 
be directly used for fault-tolerance in sensors and actuators of a closed 
loop control system. Further, for space applications fault-tolerance 
needs to be achieved without much penalty in weight and computational 
requirements. 

This paper describes briefly the attitude control system (ACS) of a 
spacecraft and highlights the essential features of a fault-tolerant control 
system. Schemes for fault tolerance in sensors and actuators are 
presented with an analysis on various failure modes and their effects. 
Newly developed fault-detection, identification and reconfiguration 
(fdir) algorithms for various elements of ACS are described in detail. 
Also an optimum symmetrically skewed configuration for the attitude 
reference system using dynamically tuned gyros is developed. 

Some of the schemes have already been used in Indian Spacecraft. As 
future Indian space missions will directly cater to various applications on 
an operational basis, the ultimate objective is to have a totally 
fault-tolerant ‘intelligent’ autonomous spacecraft. 

Keywords. Spacecraft; fault-tolerant control; autonomous recon¬ 
figuration; fault tolerance; attitude control; gyros; attitude reference 

system. 
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1. Introduction 

“It is a feature of most, if not all, control systems that they are only really noticed 

when they go wrong” 
— A J Sarnecki 

“Be prepared for the unexpected” 

“Better put a strong fence round the top 

valley” 

— Motto of US Scout 

of the cliff than an ambulance down the 

— Unknown 

Attitude control of spacecraft is the process of orienting and maintaining the 
spacecraft and/or the application payloads - such as cameras, antennae, and 
radiometers - in a desired direction. The satellite’s axes inclination with respect to 
a reference is called the satellite’s attitude or orientation. Attitude control is also 
required to orient solar panels for maximum power generation, to maintain the 
desired thermal conditions within the spacecraft and to cater to any other specific 
requirements like having the very high resolution radiometer (vhrr) cooler 
looking away from the sun. 

The attitude control system (acs), the heart of a spacecraft, consists of various 
types of sensors and actuators, and control electronics (on-board computer). The 
control electronics process attitude information from sensors according to given 
control strategies and generate control signals for actuators to correct attitude 
errors, if any. Modern spacecraft that render a variety of sophisticated services 
impose stringent requirements on attitude accuracy and jitter (attitude rate) and 
consequently the ACS becomes very complex. Also, the long life of space missions 
(10 to 15 years) significantly influence the system design and operation. 

In our modern society, spacecraft play many important roles, domestic and 
international telecommunication and broadcasting, weather forecasting ^meteoro- 
logy), remote sensing, reconnaissance (military applications) etc. and their services 
have become essential in our day-to-day life. Hence, there is a growing need to 
provide uninterrupted operation of spacecraft over very long periods of 10 to 15 
years. Therefore, ACS need to be highly reliable and provide uninterrupted 
operation, in addition to meeting other stringent performance requirements. 

However, despite various efforts to improve reliability of a system through 
‘fault-avoidance’ techniques such as improvements in design and fabrication, use of 
high reliability and burnt-in or screened components and elaborate and intensive 
testing, failures do occur in various subsystems during their long operational life. 
Failure of even one of the components/subsystems might lead to malfunction of the 
entire control system which, in turn, might result in aborting the mission. Effects of 
failures may range from an interruption in service for a few days and degraded 
performance to catastrophic ending of the mission. 

1.1 Need for an autonomous fault-tolerant system 

Most of the earlier and current spacecraft control systems generally have redundant 
units/subsystems to achieve required reliability and to mitigate mission critical 
‘single-point-failures’. They are, however, greatly dependent on ground support for 
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decision making and management of redundant units. Diagnosis and adaption to 
faults is carried out by mission/subsystem specialists on ground through careful 
analysis of various performance and status information telemetered (transmitted) 
to the ground. Depending on the nature of fault(s) remedial actions are taken 
through telecommands to effect recovery and to bring the spacecraft back to 
normal operations. But this approach is not suitable for complex spacecraft and 
invariably leads to attitude loss and interruption in service which is not tolerable in 
many applications. Also, there are attendant risks of attitude reacquisition and fuel 
penalty. Further, this approach suffers from the following limitations: 

(1) Due to inherent delays in taking corrective actions from ground, failures such 
as free flow of fuel through thrusters and the speed of reaction/momentum wheel 
going beyond its absolute maximum limits, might lead to catastrophic effects. 

(2) As in low earth remote sensing satellites, spacecraft may not be ‘visible’ from 
ground station(s) all the time to take corrective measures. For deep space missions, 
interactive control is not possible because of the very long time (about 30 minutes) 
taken for information travel. 
(3) Also, before corrective action is taken the attitude might have been lost 
necessitating ‘reacquisition’ of the attitude. Reacquisition attitude is not an easy 
exercise, especially in the absence of a global network of ground stations, and might 
take a few hours to a couple of days interrupting the utility of the mission. 
(4) In a crisis like a natural calamity, or an external threat, when continued spacecraft 
operational support would be required more than ever, ground contact and control 
could be interrupted for long periods. 

Thus, there is need to design and incorporate a fault-tolerant control system that 
performs its functions autonomously despite failures. This can be achieved using 
redundant subsystems and detecting behaviour of subsystems on board the 
spacecraft, with full autonomy to switch automatically to redundant units in case of 
failures. This approach also simplifies ground station operations significantly. 

1.2 Fault-tolerance in the control system 

The fault-tolerance approach accepts the inevitability of failures and counteracts 
the effect of failures through functional redundancy. It is a “fault-management” 
technique. Functional redundancy may be achieved either by repeated execution 
(temporal) or replicated hardware and software (physical). Fault-tolerant systems 
automatically maintain correct operation of the system despite failures without 
human intervention. They also have better reliability and system integrity than is 
achievable by fault avoidance. 

The concept of fault-tolerance is not new and a lot of techniques have been 
developed for fault-tolerance in computer hardware and software (Avizienis 1976; 
Rennels 1978; Bennets 1979; Siewiorek & Swaz 1981). Since failure modes and 
redundancy management of sensors and actuators are quite different from that of 
the computer/control electronics systems, widely used fault-tolerant computing 
techniques are not directly applicable to sensors and actuators. For instance, 
actuators that failed in a continuous actuating mode cannot be left as such by 
substituting a redundant actuator, as is usually done in computers/control 
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electronics. The popular triple modular redundancy (tmr) with majority-voting is 

also not applicable to actuators like reaction/momentum wheels. 
Also, space applications impose severe constraints on weight, volume, power 

consumption and location for mounting sensors/actuators. Hence, the number of 
redundant units - degree of redundancy - have to be kept to a minimum. On-board 
fault detection and identification algorithms for actuators and sensors should be 
simple for implementation without much increase in hardware, software and 
run-time overheads. In addition, it is desirable that these algorithms are based on 
existing performance measurements, without need for additional monitors/ 

transducers. 
The basic principle of an autonomous fault-tolerant control system is to prevent a 

faulty unit from having any further effect and to automatically substitute a 
redundant subsystem in place of the failed unit before failure results in 
unacceptable performance. Thus, this strategy enables the system to continue to s 
perform its function without interruption even in case of failures. An autonomous 
fault-tolerant attitude control system besides performing the normal attitude 
control functions does the following on board the spacecraft: i) monitors 
performance of its various subsystems, ii) detects and identifies failures, if any, and 
iii) reconfigures the subsystem (substitutes a redundant module) automatically on 
board the spacecraft. 

A fault-tolerant attitude control system by tolerating failures in sensors, actuators 
and control electronics, ensures correct operation inspite of failures; it gives un¬ 
interrupted performance and enhances the reliability, the life of the spacecraft and 
the probability of mission success. 

But, as yet, not many spacecraft have autonomous fault-tolerance features. This 
perhaps may be due to the complexity of fault-detection and identification 
algorithms proposed earlier and the feasibility of only limited on-board computa¬ 
tions. Now, however, with the availability of high performance microprocessors 
and reasonably simple algorithms it is possible to have an autonomous fault-tolerant 
spacecraft attitude control system. In the following, with a brief discussion on 
various subsystems of ACS, we highlight essential requirements of a fault-tolerant 
control system and discuss some simple schemes for fault-tolerance in attitude 
sensors and actuators. Fault-tolerant computers/electronics have been discussed 
quite extensively elsewhere (Avizienis 1976; Rennels 1978; Bennets 1979; 
Siewiorek & Swaz 1981). 

2. Basics of spacecraft attitude control 

The attitude control systems orients and maintains the spacecraft at the desired 
state in spite of disturbance torques and other perturbations on the spacecraft. The 
life of the attitude control components/elements essentially decides the operational 
life of a spacecraft. Attitude control of a spacecraft is a classical closed-loop control 
problem and figure 1 gives the functional relationship between the various elements 
of ACS and their inputs/outputs. The input reference gives the desired state of the 
system; the actual state of the system measured by attitude sensors forms the 
feedback signal. The difference between the reference and the feedback signal is 
the error signal indicating deviation between the desired and the actual state. 
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• i 

Figure 1. Block schematic of spacecraft attitude control systems. 

Generally, attitude measurement is related directly to desired orientation, and 
hence attitude sensors’ outputs directly give the error signal. 

The controller generates actuating signals to torquing devices/actuators, based 
on the error signal and according to ‘control laws’ that give the desired overall 
system-performance. Actuators generate torque/force in the desired direction 
under command from the controller. The spacecraft dynamics gives the rela¬ 
tionship between the motion of the spacecraft and the torque/forces (either 
intentionally generated or disturbance) affecting the motion; it forms a part of the 
control system. The dynamic behaviour of the spacecraft is generally determined by 
its physical characteristics like moment of inertia, static/dynamic unbalance etc. 

One would expect little disturbance to a spacecraft once the spacecraft is in orbit. 
However, there are several sources of disturbance torques/forces: aerodynamic 
pressure, solar radiation, magnetic effects, gravity gradience and internal disturb¬ 
ances, which tend to turn the spacecraft away from its nominal attitude. The 
attitude control system counteracts these disturbances and maintains the desired 
attitude. Disturbance torques are either cyclic or secular. Cyclic disturbances do 
not cause net change in attitude after one complete orbit. Secular torques operate 
more or less constantly in the same direction; they, therefore, eventually require 
the operation of thrusters to remove their cumulative effects. 

The motion of the spacecraft is measured by attitude sensors and feedback to the 
controller. There are various types of attitude sensors and actuators (figure 2) and 
their choice depends on the required attitude accuracy/stability, type of stabilisa¬ 
tion used, mission application, reliability and life of the spacecraft. 

Attitude control requirements for a given mission depend on application. 
Important attitude control parameters are: pointing direction, manoeuvres (change 
in pointing direction), pointing accuracy and stability (maximum attitude rate). 
Also, it has to meet other mission requirements, such as minimum on-orbit life, 
reliability, weight and cost. 

2.1 Stabilisation techniques 

A spacecraft that is not stabilised in some way will tumble in orbit due to forces of 
disturbance present in the space environment. Consequently, payloads, sensors, 
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• sun sensor 
• earth sensor 
• gyros 

• analog system 
• hard wired 

digital system 

• gas jets(RCS) 
• momentum wheels 
• reaction wheels 

• star sensors 
• RF sensors 

• microprocessor 
based system 

• magnetic torquers 
• electric/ ion 

propulsion 

Figure 2. Elements of attitude control systems. 

antennae and solar arrays will be pointing in random directions. Spacecraft, 
therefore, have to be stabilised in orbit to maintain desired orientation. 

Spacecraft may be stabilised by passively controlling the axes using environmental 
torques or by actively controlling the axes using hardware such as gas jets, momentum/ 
reaction wheels and electro-magnetic torquers. Passive stabilisation makes use of 
either gravity gradient, solar radiation or aerodynamic environmental torques and 
does not consume the spacecraft’s electrical power and propellants. Also, there is 
no need for attitude sensors, actuators and on-board controllers. But these 
techniques have severe limitation on the pointing accuracy and direction of orienta¬ 
tion. Further, they depend on the altitude and the shape of spacecraft and are very 
slow in response. Passive stabilisation techniques are, therefore, not generally used 
as a primary mode of control. Active stabilisation, on the other hand, is more 
accurate, flexible and faster; it can be adjusted to meet the mission requirements. 
In the “zero-g" space environment a small force is sufficient to turn the spacecraft. 
Spacecraft could be spin stabilised or three-axis stabilised. 

2.1a Spin stabilisation: The simplest means of controlling the attitude of a 
spacecraft is to spin the spacecraft about its axis of maximum moment of inertia; 
the momentum imparted by spin keeps the spin axis fixed in inertial space. 
Orientation of the spin axis assists the satellite mission to varying degrees. 
Body-fixed solar arrays in a spinning spacecraft give relatively low solar power - 25 
to 30% of sun-oriented solar panel of the same area - since at a time not all the 
solar cells will be facing the sun. Further, spin stabilisation results in wobble 
(nutation) and is limited to a single axis. 

2.1b Three-axis stabilisation: In ‘three-axis-stabilisation’, also known as body 
stabilisation, all the three axes, pitch, roll and yaw, are actively controlled using 

intentionally generated torques to counteract disturbances. In a spacecraft that 
maintains its orientation relative to earth, i) the yaw axis is directed towards the 
nadir (i.e. towards the earth centre), ii) the pitch axis is directed towards the 
negative orbit normal, and iii) the roll axis is perpendicular to the other two such 
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that the unit vectors along the three axes have the relation R = Px Y. The pitch, roll 
and yaw angles, 6, </> and i//, are defined as right-handed rotations about their axes 
(Wertz 1978; Thomson 1963). 

Stabilisation can be achieved using momentum/reaction wheels, which absorb 
disturbance torques and mass expulsion devices (such as gas or ion thrusters), and 
electromagnetic coils, which generate torque* by interacting with the earth’s 
magnetic field. A mass expulsion system refers to a reaction control system (rcs) 

consisting of gas thrusters; it generates force/torque by expelling cold or hot gas 
under pressure. A very low torque is sufficient to change the orientation of a 
spacecraft. One pair of thrusters pointing in the opposite directions is provided for 
each of the three axes and attitude is maintained or altered by ‘firing’ both the 
thrusters simultaneously. The thrusters generate short and matched torque pulses. 
RCS is efficient in execution of a manoeuvre, simple to operate and not limited to a 
particular altitude/environment. But, they require complex hardware/plumbing 
and limit the life of the control system by the amount of fuefstored. RCS, however, 
is essential for recovery from large initial attitude error/rate (attitude acquisition) 
and for orbit control. 

(i) Momentum biased system: An internal momentum wheel, a rotating flywheel 
with a large inertia, is spun up to maintain a large momentum about its spin axis; it 
keeps that axis stabilised in two coordinates in inertial space. A momentum wheel 
that is mounted along the pitch axis of a spacecraft actively controls the pitch axis 
by modulating the wheel speed around a bias speed. Momentum due to disturbance 
torques are absorbed by momentum wheels. When secular disturbance torques 
force the wheel speed to go beyond the operating limits, external torquing by a 
magnetic torquer or by a reaction control system (rcs) is used to bring the wheel 
speed within limits. This is known as ‘momentum dumping’. 

Only roll error needs to be corrected, when it exceeds a limit, by external 
torquing. Roll-yaw coupling, over a quarter of an orbit due to gyroscopic stiffness, 
automatically limits the yaw error. Pitch and roll errors are sensed by earth sensors. 
The controller generates control signals for momentum wheels and magnetic 
torquer/thrusters. 

(ii) Zero momentum (reaction wheel) system: In a zero-momentum system, 
spacecraft is stabilized in all the three axes by reaction wheels mounted along each 
axis. Rotation about any axis is accomplished by changing the speed of the 
corresponding reaction wheel; no thruster firing is needed until the wheel speed 
reaches its limits. The nominal speed of a reaction wheel is zero; the wheel can be 
rotated in either direction to absorb disturbance torques or to reorient the 
spacecraft. Pitch and roll errors are measured by earth sensors, while the gyro gives 
the yaw error. An attitude reference system (ARS) using gyros also gives attitude 

error about all the three axes. 

(\\\) Hybrid system: Stabilisation using the momentum wheels for pitch control 
and the reaction wheel for roll/yaw control is also feasible. Also two momentum 
wheels in V-configuration can be used for both pitch and roll/yaw control. Such 
schemes give continuous pitch and roll control. 

(iv) Magnetic control: A magnetic field produced by ihe on-board magnetic 
coil/torquer interacts with earth’s magnetic field and generates torque to orient the 
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spacecraft and to counteract disturbance forces. By controlling magnitude and 
direction of the current through magnetic torquer, in relation with the earth’s 
magnetic field, the required control torque is obtained. 

2.2 Modes of operation 

Primary modes of operation are: attitude acquisition, attitude maintenance and 
orbit control. An initial mode of operation, which controls the attitude rates and provides 
proper orientation after separation from the launcher/booster, is known as attitude 
acquisition. Attitude maintenance (also known as normal mode) covers operations 
required to maintain proper attitude/orientation. During this phase, a spacecraft 
renders the designated services. The other mode-of control ensures proper 
orientation of the spacecraft during velocity corrections required for orbit control. 

The amount of propellant that can be carried becomes the ultimate life-limiting 
factor of a spacecraft. Lifetimes of upto 10 to 15 years are required in many 
spacecraft. The possibility of replenishing the propellant while the spacecraft is in 
orbit by means of excursions by the Space Shuttle promises to remove this 
limitation; but this is feasible only for low earth-orbiting spacecraft since the Space 
Shuttle does not reach geosynchronous altitudes. 

Also the electromechanical systems that are continuously in rotation, such as 
momentum/reaction wheels and gyros, must have very long operational life. The 
reliability, life and criticality of failures determine the number of redundant units 
and their configuration. 

% 

3. Fault-tolerant attitude control system 

Fault-tolerant attitude control systems (FACS) consist of a fault-tolerant attitude 
control electronics and a set of redundant attitude sensors and actuators. The 
attitude control electronics, besides performing the attitude control function, does 
the following automatically on board the spacecraft: i) monitors performance of 
various sensors and actuators, ii) detects and identifies failures, if any, and 
iii) reconfigures the faulty subsystem. A fault-tolerant attitude control system by 
tolerating failures in sensors, actuators and control electronics ensures correct 
operation despite failures; it gives uninterrupted performance and enhances the 
reliability and probability of mission success. 

3.1 Requirements of FACS 

Essential requirements of a fault-tolerant attitude control system are; 

1. Despite single failure in any one or more of the critical subsystems, the attitude 
control system (ACS) must perform all its functions autonomously and without any 
interruption. Also, depletion of fuel due to failure should be avoided. 

2. The number of redundant units (the degree of redundancy) is to be minimum 
as there are severe constraints on power consumption, weight, volume and 
locations used for mounting sensors and actuators. 

3. Fault detection, identification and reconfiguration schemes/algorithms should 
be fairly simple and realisable using a microcomputer. 



Fault-tolerant spacecraft attitude control system 241 

4. Fault detection and identification schemes, to the extent possible, should be 

based on the already available performance measures/monitors and other 

house-keeping information; additional transducers/monitors should be avoided. 

5. Transient failures present for relatively short duration and disappearing later, 

should not result in reconfiguration. 

6. FACS should protect against 'hard-over' failures that result in attitude loss, 

interruption in service and catastrophic effects like depletion of propellant. 'Soft 

failures' result in marginal degradation in performance and do not cause any 

catastrophic effects. Soft failures, if any, can therefore be identified by analysing 

the telemetered data on ground and necessary remedial actions can be taken 

through telecommand. 

7. FACS should store the history of events and information about sequence of 

actions taken to mask failures and sent them through telemetry. 

8. Provision should exist to enable or disable the autonomous reconfiguration, 

either through telecommand or by signals generated on board. 

9. Despite various measures taken if the spacecraft attitude is lost, the 

fault-tolerance scheme should generate a signal to keep the spacecraft in a 'safe 

mode’, which ensures generation of adequate solar power and healthy, safe and 

commandable state of the spacecraft. After detailed analysis remedial action can be 

taken from the ground to resume normal operations, if possible. 

10. Add-on approach: Fault-tolerant techniques/schemes should be general in 

nature so that they are applicable to most spacecraft. Further, fault-tolerance 

should be achieved with existing and proven subsystems (sensors and actuators) 

without need for changes/modifications in the sensors and actuators. 

3.2 Fault-tolerance in control electronics 

A fault-tolerant attitude control system requires fault-tolerant control electronics, 
attitude sensors and actuators (Murugesan 1985). The microprocessor based 

spacecraft attitude control electronics (microcomputer) and its software can be 

made fault-tolerant by adopting the well-known hardware and software fault 

tolerance techniques used for general purpose computers (Avizienis 1976; 

Anderson & Lee 1981; Flecht 1979; Siewiorek & Swaz 1981; Johnson 1984; Lala 

1985). The control electronics, besides performing the functions needed for 

attitude control, carries out the processing and take decisions necessary for 

fault-tolerance in sensors and actuators (figure 3). 

3.3 Fault-tolerance in sensors 

A traditional scheme for protecting against failures in a sensor is to have three (dr 

more) sensors for measuring the same parameter, with some form of voting on their 

output. The well-known majority voting, however, is not suited for triplicated 

sensors since output of different sensors measuring the same parameter may not be 

exactly equal due to several factors including noise, drift and lack of precision. 

Therefore, a different selection procedure - such as weighted nonlinear averaging 

(Brown 1975) and median selection (McConnel & Siewiorek 1981; Ammons 1979), 

which mask the output that is significantly different from others that are 'nearly 

alike’ - has to be used. This type of voting is known as 'inexact voting’. Weighted 

non-linear averaging, however, is complex to implement. A simple feedback type 
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signals for autonomous reconfiguration of 
sensors /actuators 

- signals for attitude control functions 
z::: signals for achieving fault-tolerance 

Figure 3. Basic scheme of fault-tolerance in attitude control systems. 

median selector for analog signals is given in figure 4. A novel and simple 
cascadable median selector for /7-bit digital data using \n!2\ IK byte PROM 

(Programmable Read Only Memories) is described by Murugesan (1985). 
A static redundant system automatically and instantaneously protects against 

failures without any need for explicit fault detection and identification of faulty 
sensor. But this scheme requires three (or more) sensors, imposes a heavy burden 
on power consumption since all the sensors and its processing electronics are to be 
powered, and increases the weight, volume, cost and constraints on mounting 
space/locations for sensors. 

In many applications, therefore, a fault-tolerant scheme based on two redundant 
sensors (dynamic redundancy) is desired. As both the sensors in a dual-redundant 
system are powered and measure the same parameter, detection of failure, if any, is 
quite simple. However, there is no direct way of identifying which of the two 

Figure 4. Median selector for analog signals. 
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sensors is faulty. Many indirect approaches have been proposed for fault detection 
and identification: Multiple model methQd (Wilsky 1976), generalised likelihood 
ratio test (GLRT) (Wilsky 1980), failure detection filters (Wilsky 1976), multiple 
Luenberger observer (Clark 1975) etc. But these schemes are complex and require 
a lot of real-time on-board computations. Further, they are sensitive to model 
errors, system non-linearity and parameter variations. Hence, these techniques are 
not suitable for on-board implementation in most spacecraft. 

Simple fault-tolerance schemes based on the sensor’s output and the general 
behaviour of the spacecraft’s attitude are, therefore, developed for earth sensors 
and given in the next section. Also, a new skewed configuration for a fault-tolerant 
attitude reference system using three dynamically tuned gyros (dtg) is described in 
§5. It is an optimum configuration in terms of error in the attitude estimate, 
computational requirements/complexity and fault coverage. This configuration is 
better than the other configurations proposed so far. 

3.4 Fault-tolerance in actuators 

The nature of failures in actuators and their effects is different from that of sensors 
and computers. Fault-tolerance schemes suitable for sensors/computers, therefore, 
may not be directly suitable for actuators,. For instance, an actuator that failed in a 
continuous actuating mode can not be simply substituted by a redundant actuator, 
leaving the faulty actuator as such, as is usually done in sensor/computers. The 
failed actuator is to be prevented from having any further effects on the overall 
system performance, and leaky or fully open flow control valves/pipe lines have to 
be inhibited before an alternate valve/path is chosen and depletion of propellant/ 
fuel has to be stopped. The fault-tolerance approach differs depending on the type 
of actuator. 

Failure modes and fault detection and identification (fdi) algorithms for 
reaction/momentum wheels and reaction control systems (RCS) are described in the 
subsequent sections. The control electronics monitor the performance of actuators, 
detect and identify the failure based on the FDI algorithms (developed in this work) 
and reconfigure the actuators accordingly. 

4. Fault-tolerant dual-redundant earth sensor 

Earth sensors measure both pitch and roll errors of a three-axis stabilised satellite. 
They basically detect the infrared radiation from earth and compute pitch and roll 
errors, 6 and </>, respectively. The outputs of earth sensors (es) are fed to 
controllers; the controllers drive the actuators so as to correct the attitude errors, if 
any, and maintain the spacecraft in the desired orientation. Two earth sensors ES1 

and es2 are used, as shown in figure 5, which are redundant to each other. Outputs 
of either of the sensors can be selected for closed-loop attitude control. The two 
earth sensors may be identical or of different types, thereby providing ‘design 

diversity’. 
Earth sensor failures can broadly be classified as soft and hard failures. Bias 

errors, excessive random noise on output and scale factor errors are considered as 
soft failures. Under hard failures, however, outputs may be stuck-at-a-low value, 
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Figure 5. Fault-tolerant dual-redundant earth sensors. 

including zero, or stuck-at-a-higher value (relative to normal attitude error), 
including saturated levels. While soft failures result in poor measurement accuracy 
and hence degraded performance of the attitude control system, hard failures lead 
to attitude loss and might jeopardize the whole mission. Thus, hard failures are 
more critical than soft failures. 

4.1 Detection and identification of failures 

When both the sensors ESj and ES2 measure attitude of the spacecraft, performance 
of a sensor can be compared with respect to the other, facilitating easy detection 
and identification of certain sensor failures. For instance, if only one sensor is 
working and measured attitude error shows an unusually high value, we cannot 
conclude that error is high because of failure of the sensor, since failure of the 
controller and/or actuators also could result in higher attitude errors. Thus, it is 
very difficult to identify the exact source of failure in a closed-loop control system 
without additional information. 

In an ideal situation, outputs of both the sensors would be exactly equal and 
hence their difference would be zero. However, because of non-identical sensing, 
misalignment, unequal bias, minor variations in scale factors and random noise, a 
non-zero difference is normally obtained even if both the sensors are working 
properly. 

Either ES1 or ES2 can be selected for closed-loop attitude control; the sensor in 
the loop is designated as ESA, while the other that is not used for closed-loop 
control is designated as ESB. Considering the possibility of hard failures in one of 
the sensors of a dual-redundant sensor system, the five operating conditions are as 
in table 1. 

An algorithm for detection and identification of hard failures of earth sensors is 
given in figure 6. When an output of the sensor ESA, which in the closed-loop, fails 
at high, controllers would be continuously torquing the reaction/momentum wheels 
and/or thrusters in the same direction resulting in continuous increase in attitude 
errors in the opposite direction. The attitude errors, however, would be properly 
sensed by the redundant sensor ESB, which is not in the loop. If the difference in 
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Table 1. The five possible operating conditions of a 

dual-redundant sensor system 

Sensor in the loop 

ESa 

Sensor not in the loop 

ESb 

Ok Ok 

Stuck-at-high Ok 

Stuck-at-low Ok 

Ok Stuck-at-high 

Ok Stuck-at-low 

pitch or roll outputs of two sensors ESA and ESB, (0A~6B) or (</>A—</>B),exceeds the 

threshold ed indicating failure of one of the sensors, and if the outputs 0A or (fA are 

greater than the upper limit eL! for at least three consecutive samples, then ESA is 

considered faulty. 

( return ^ Figure 6. FDI algorithm for dual- 
redundant earth sensor. 
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On the other hand, if the sensor ESA is stuck at zero (or low), the controller 
output will be near zero and hence the actuators will not impart significant torque 
to the spacecraft. Since attitude is not controlled under this failure mode, attitude 
error would gradually build up depending on residual rate and disturbance on the 
spacecraft. But the attitude error will be properly measured by ESR. Thus, when the 
difference in the outputs of the sensors ESA and ESB exceeds the threshold, ed, 

failure will be detected. If the attitude error as measured by ESB still continues to 
increase in the same direction, the sensor ESA is considered stuck-at-low. 

If the failure of earth sensor is detected and the above checks do not indicate 
failure in ESA, even after an elapse of sufficiently large time (about 100s or so), then 
ESRis considered faulty. Stuck-at-zero (low) failures in ESR, do not have any impact 
on the spacecraft performance or on the other sensors, and hence, it can not be 
identified by the above methods. If a sensor is functioning normally, there would be 
small variations (noise) in the output. However, if an output is stuck-at-zero or any 
other value, there wodld not be any change/variations. Thus, if the output dB or </>R 
remain constant without any changes for a large duration (100s) then ESR is 
considered faulty. 

Excessive random noise in sensor outputs is detected using the statistical 
technique ‘hypothesis testing’ Variance of a set of samples of an output is a 
measure of scatter of the output about the mean value; if it exceeds an upper limit 
that output is excessively noisy, and hence, the sensor is considered faulty. ‘Trend’ 
in output has, however, to be removed before computation of sample variance 

Although bias errors are less troublesome, if its magnitude is high it will shift the 

orientation of the spacecraft, and hence the payload, resulting in performance 

degradation and/or interruption in service. Let us assume that sensor ESA which is 

in the closed-loop has developed a bias error of +0h. Because of closed-loop 

control action, the output ESa will be maintained near zero by orienting the 

spacecraft towards the opposite direction, resulting in attitude error of —0b\ As the 

redundant sensor ESB (which is not in the loop) is functioning properly, its output 

will correctly measure the attitude error of —6h. On the other hand, if ESA is 

functioning properly and ESB has a bias of — 0h, then also the output of ESAwould be 

near zero, while that of ESB would be —6h. Bias errors of sensors used for 

closed-loop control, therefore, cannot be directly detected and identified from the 

sensor outputs alone and an indirect approach using other factors which depend on 

the type of attitude stabilisation and controller used is required. As the scheme is 

not general and is mission-specific, it is not described further here. Further details 
are given elsewhere (Murugesan 1985). 

4.2 Autonomous reconfiguration of earth sensors 

The reconfiguration scheme for earth sensors is as follows: 

(i) If ES, outputs are being used for closed-loop control and the sensor is found 
faulty, the outputs of the redundant sensor ES2 are selected for closed-loop control; 
on the other hand, if ES2 has failed, ES, outputs continue to be used for control. 
(ii) If ES2 outputs are being used for closed-loop control and ES2 is found faulty, the 
outputs of ES, are selected for closed-loop control; on the other hand, if ES, is 
faulty, ES2 outputs continue to be used for closed-loop control. 
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The above scheme for sensor failure detection is insensitive to failures in other 
subsystems. For instance, if attitude errors become large due to improper 
functioning of attitude control electronics or actuators, the earth sensor will not be 
identified as faulty since outputs from both the sensors would still be nearly equal, 
indicating proper operation of both the sensors. Further, although fault detection 
time is high under certain failure modes, it does not significantly affect the 
performance of a spacecraft, as the time constant of a spacecraft attitude control 
system is high. 

5. Fault-tolerant attitude reference system using dynamically tuned gyros 

Attitude reference systems (ars) using gyros give the attitude of a spacecraft about 
the three orthogonal reference axes X{, X2 and X3; they are preferred for 
spacecraft control applications since they have better (short-term) accuracy than 
earth sensors. For achieving very high reliability over a long period and for 
fault-tolerance, attitude reference systems use more gyros than the minimum 
required for basic measurement along the three principal axes. Fault-tolerance is 
achieved by autonomous failure detection and identification (FDI) and isolation of a 
faulty gyro, with subsequent modification in attitude estimation schemes. Also, 
redundant information improves accuracy of the derived attitude estimate by 
reducing uncertainties. 

A dynamically tuned gyro (DTG) measures angular information along two 
perpendicular directions and two DTG are sufficient to provide attitude information 
about all the three axes. But, an ARS using more than two DTG provides attitude 
information about all the three principle axes despite failure of one or more DTG. 

An attitude reference system with three DTG can tolerate failure of any one DTG. 

DTG can be arranged in various geometrical configurations. The basic considera¬ 
tions involved in selecting a particular configuration are: (1) effectiveness of fault 
detection, identification and reconfiguration, (2) simplicity of computations and 
processing, and (3) error in estimated attitude for a given error in gyro output. 

The orthogonal configuration (Flarrison & Chen 1975) has the measurement axes 
of DTG along the reference axes. It is simple and gives minimum error in the 
estimated attitude, for a given error in gyro output. Though the orthogonal 
configuration is claimed to be the optimum configuration, identification of faulty 
DTG is based on the hypothesis that if a DTG fails then its outputs from both the axes 
will be erroneous. However, when failure is not common to both the axes, a 
particular output alone would be erroneous, while the other output is correct. For 
instance, if final output-buffer, parallel-to-serial shift register or a logic gate of an 
output is faulty, then that output alone would be erroneous. Hence, in the 
orthogonal configuration one cannot identify and tolerate a faulty DTG under all 
types of failure. 

Though orthogonal-cum-skewed (Engelder 1980) and coplanar (Harrison & Gai 
1977) configurations tolerate all modes of failure of DTG, they give more error in 
the attitude estimate than the orthogonal scheme. Further, processing and FDI 

schemes for these configurations involve more computations. 
We, therefore, have developed a new symmetrically-skewed optimum configura¬ 

tion for an attitude reference system using three DTG (figure 7). Three DTG D,, D2, 
and D2 are arranged such that. 
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Figure 7. A new symmetrically skewed configuration for the attitude reference system using DTG. 

(i) the measurement axes Yxx and Yn of DTG D} lie in the Xx-X2 plane and make 
an angle of 45° with respect to the reference axis Xx. 

(ii) the measurement axes Y21 and Y22 of DTG D2 lie in the X2-X3 plane and make 

an angle of 45° with respect to the reference axes X2, and 

(iii) the measurement axes Y31 and Y32 of DTG D3 lie in the X3-Xx plane and make 
an angle of 45° with respect to the reference axis X3. 

The outputs ytj, i— 1 to 3 and j= 1 to 2 from the DTG are related to the attitude xx, 

x2 and x3 along the three principal axes as follows: 

yn c -c o" 
yn c c 0 
y 21 0 c -c *1 
y 22 = 0 c c • *2 
y 31 -c 0 c *3 

y 32 c 0 c 

+ L 

where C = 0-7072 and f is the measurement noise. 

Attitude estimates xx, x2 and i3 are obtained from the output of DTG , i — 1 to 
3, j = 1 to 2, using the least square estimation technique. The attitude estimate 
when all DTG are functioning properly is given by 

i, = A:,(^n+>>i2->-3,+>32), 

*2 = KAyu+yn-yu+yn)’ 
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X3 ~ ^3(^31 JV32 — ^21 Fy'22)^ (2) 

where K3 = 0-3536. 

5.1 Failure detection, identification and reconfiguration 

For detection and identification of faulty DTG, however, a set of parity equations 
{/?i, p2- ■ ■Pk} is required. A parity equation is a linear combination of the DTG 

output, and is independent of the attitude X\, x2 andjc3 along the three reference 
axes. The parity equation is defined as 

p ~ f Obi? yi2> ^21^ ••• ym9 ym), 

and by definition, 

P *f(x 1, x2, x3). (3) 

Thus, parity equations expose only the combined measurement error, if any, and 
not attitude information. 

The set of parity equations, however, must satisfy the following conditions: 
(1) each measurement is incorporated in at least one parity equation, and 
(2) the pattern of parity equations should provide the information necessary for 
fault identification. The parity equations are given by 

Pi = Cyn+yD + Cysi-yaz). 

P2 ~ (yn ^yn)+ (fti — yn)’ (4) 

ft = Gai +^32) + G21 —^22)- 

Under failure-free’operation of the DTG, the three parity equation residuals pv, 

p2 and p3 would be very low. But, if a DTG is faulty, and hence any one or both of its 
outputs are erroneous, then those parity equation residuals involving the erroneous 
output will have a large value. To detect failure in a system, therefore, the parity 
equation residuals are compared with a failure threshold, /th, selected in 
consistency with normal measurement errors, uncertainties and noise. 

The Boolean variable Ft is set to ONE if the parity equation residual p] is greater 
than /th; and reset to ZERO otherwise; i.e., 

F, = 1, if Pj > /lh, 

= 0, otherwise, for i = 1 to 3. (5) 

In case of failure of a DTG, two of the three Boolean variables F1, F2 and F3 would 
be ONE, thereby detecting a failure in the attitude reference system. 

The value of the Boolean variable Ft can also be decided based on current and 
the last few observations using statistical techniques such as the Generalised 
Likelihood Ratio Test (glrt) (Daly et al 1979) and modified sequential probability 
ratio test (Chin & Adams 1976). The advantage of these techniques is that even 
the smallest failure magnitudes falling within the range of measurement uncertainties 
and noise can be detected with low probabilities of false and miss alarm. But these 
schemes require additional computations/processing. 

A faulty gyro can easily be identified from the Boolean variables Fu F2 and F3. 

For instance, if the DTG Dx is faulty, and either one or both of its outputs yn and 
y12 are erroneous, then the parity equation residuals px and p2 will exceed the 
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failure threshold/th setting Fx and F2 to ONE. Since the outputs of the other DTG are 
correct, the parity equation residual p3 will be less than the threshold and, hence, 
F3 will be ZERO. Thus, if Fx and F2 are ONE and F3 is ZERO, DTG Dx is faulty. 
Similarly, other faulty DTG can be identified from Fx, F2 and F3. 

The DTG Dj is faulty if the Boolean variable L, as given below in (6), is ONE; 

otherwise the DTG Z), is faulty-free. 

Li = Fj F2 F3, 

L2 = F, Fj F3, (6) 

L3 = F\ F2 f3. 

As seen from parity (4) and the Boolean equations (6) for fault identification, 
this FDI scheme detects and identifies a faulty gyro irrespective of whether one or 
both the outputs of the DTG are erroneous. 

When a DTG is faulty, the attitude along the three principle axes is estimated 
from the outputs of the other two DTG, based on the least square estimation 
technique, ignoring both the outputs of the faulty DTG. The attitude estimates for 
various cases of failure of DTG are given in figure 8. 

The proposed configuration is better than the other configurations and requires 
only simple computations for estimation of attitude and fault detection and 
identification (FDI). It tolerates failure in one or both the outputs of a DTG and 
gives the same accuracy in the attitude estimate as that of the orthogonal 
configuration. Comparison of various configurations is given in Murugesan (1985). 

6. Fault-tolerant reaction/momentum wheel system 

A reaction wheel basically consists of a flywheel (disc-shaped rotating mass of 
required inertia) driven by an electric motor and the associated bearings and drive 
electronics. The reaction wheel rotates in either direction from zero to a maximum 
permissible speed of about 6000 rpm. For long-life operation iq space, conven¬ 
tional brushed d.c. motors are not suitable as drives for reaction/momentum 
wheels due to severe catastrophic wear of brushes and commutator segments, 

possibility of ‘cold welding’ between contacting surfaces under hard vacuum and 
arcing across brushes and commutating segments. Iron-less brushless d.c. motors 
are, therefore, generally used for reaction/momentum wheels. 

Another critical component in the reaction/momentum wheel is the bearing; it 
should withstand over ten years of continuous operation. Further, conventional 
lubrication is not adequate for space applications. Hence, specially designed and 
lubricated ball-bearings with better finish of balls and races are used. With 
advances in magnetic materials and microelectronics, magnetic bearings that do not 
have physical contact between rotor and stator are being increasingly used in 
reaction/momentum wheels. Magnetic bearings facilitate higher wheel speeds and 
enhance operation life of reaction/momentum wheels. 

Reaction torque: The change in wheel speed gives rise to reaction torque, and 
hence, counters disturbance torques about the axis of angular momentum vector. 
The reaction torque, TR, is given by 



Fault-tolerant spacecraft attitude control system 251 

(Veturn^ 

Figure 8. FDI algorithm for attitude reference systems. 
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TR=/(dS/df), (7) 

where S = wheel speed, rad/s; and / = moment of inertia of the wheel, kg.m . 
Depending on the control signal from attitude control electronics, the reaction/ 
momentum wheel varies its speed, thereby generating the required reaction 
torque. 

The reaction wheel operates over a nominal speed of zero. When the wheel 
speed reaches its maximum limit in either direction due to accumulated corrections 
of secular disturbance torques, the wheel speed is brought within the limits by 
imparting external torque using thrusters or a magnetic torquer. 

Momentum wheels are similar to reaction wheels in principle of operation except 
that a momentum wheel operates only in one direction over a large bias speed (also 
known as nominal speed) of about 3000 to 6000 rpm. 

6.1 Failure modes and their effects 

Reaction/momentum wheels might fail in one or more of the following modes. 

1. Failure to respond to control signals: This type of failure causes the wheel to 
decelerate slowly or hold its speed, without any response to control signals. Faulty 
commutation/drive electronics, drive motor and power supply, break in the 
interconnecting wires and grounding of the electrical inputs/outputs might result in 
this type of failures. 

2. Decreased reaction torque: Due to increased friction between stator and rotor, 
inadequate lubrication and marginal failures in 'bearings and its races, and 
decreased motor torque and current drive, for a given torque control signal, the 
rate of change of speed, and hence, generated reaction torque, might be less than 
the nominal value. 

3. Increased bias torque: When the torque control signal (TCS) is zero the wheel 
should hold its speed thereby generating no reaction torque. But, because of 
changes in the friction due to aging, temperature etc., the wheel may not be able to 
hold its speed. The speed may either increase or decrease gradually, thereby 
generating a low reaction torque, known as bias torque, even when the TCS is zero. 

4. Continuous generation of reaction torque: Stuck-up failures in commutation/ 
drive electronics might result in continuous increase or decrease in speed, thereby 
generating reaction torque, independent of the torque control signal. 

5. Excessive, noise torque: A major source of torque noise is bearings. Wear or 
deformation of certain balls in the bearings, increased gap between the bearing and 
its races, or cage instability give rise to non-uniform movement of the rotor/wheel at 
certaindocations during a revolution. As reaction torque is proportional to instantaneous 
rate of change of the speed, any non-uniformity in the movement results in torque 
noise. It is generally random in nature. Also, due to commutation at low speeds, 
the torque generated by d.c. motors might have some torque ripple/noise. 

All these failures except excessive torque noise might result in large attitude 
errors and/or attitude loss. The consequences of these failures range from 
interruption in service for a few days and difficult reacquisition of attitude to 
catastrophic ending of the mission. 
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Excessive torque noise from a reaction/momentum wheel results in increased 
jitter, without significantly affecting attitude error. Attitude errors remain within 
the normal limits even with excessive torque noise. While increased jitter does not 
affect the services rendered by geostationary communication satellites, it might 
result in poor quality of pictures and/or data obtained from remote sensing and 
meteorological satellites. Jitter cannot easily be measured on board a spacecraft. In 
view of the noncritical nature of this failure and the complexity in measurement of 
jitter/torque noise, it is not necessary to protect automatically the reaction/ 
■momentum wheel system against excessive torque noise. Corrective actions, if 
necessary, could be taken from the ground itself without major shortcomings, by 
switching over to redundant wheels through telecommands. 

6.2 Fault detection and identification 

The fault detection and identification algorithm for reaction/momentum wheels 
should detect and identify the wheel failures alone; faults in other subsystems 
should not be misinterpreted as faults in reaction/momentum wheels. Further, it is 
desirable that the algorithm is based on the already existing measurements/ 
parameters. 

The ‘failure sensitive filter’ proposed by Marie (1982) is complex and can detect 
only abrupt and hard failures of the wheels. We, therefore, develop here a simple 
FDI algorithm (Murugesan 1981, 1984a to detect all types of wheel failures except 
the excessive torque noise which anyway does not result in catastrophic effect or 
interruption in service. 

All types of failures of a reaction/momentum wheel directly affect change in wheel 
speed and hence the reaction torque. For instance, in the case of no'response to the 
torque control signal (tcs), the wheel speed might remain the same or decelerate 
slowly due to natural run-down independent of the TCS; reduced reaction torque is 
due to reduced rate of change of wheel speed; bias torque results in continuous 
change in wheel speed even when the TCS is zero. Change in wheel speed is, 
therefore, taken as the basis for detection and identification of a faulty wheel. 

The FDI algorithm (figure 9) is based on comparison of actual and expected 
changes in wheel speed during a given duration for a given torque control signal. 

The expected change in wheel speed of an ideal failure-free wheel, Se, over an 
interval tm is computed by integrating the torque control signal as given below: 

ASe = (G!l) 

h + lm 

Tsdt 

h 

where, I = moment of inertia of the wheel, kg.m2; Ts = torque control signal, 
volts; G = gain factor. Newton-metre/volt. 
Actual change in wheel speed, over the same interval, 

A Sa = S(tl + tm)-S(tl), (9) 

where, S(tl + tm) is wheel speed at t = tx + tm; S(tx) is the wheel speed at t = tx. 

For a properly functioning and fault-free wheel, actual and expected changes in 
wheel speed dqring a given interval would nearly be the same; there may, however, 
be some difference between these two changes in speed because of non-zero bias 
torque, variations in gain factor due to aging, temperature etc., and uncertainties 
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and errors in speed measurement. A certain number of these variations/ 
imperfections are acceptable as they do not significantly affect spacecraft attitude. 
A faulty wheel, however, will result in a large difference between these two 
changes in speed. Therefore, for detection and identification of a faulty wheel, the 
magnitude of the difference between the actual and expected changes in speed of a 
wheel is compared with a threshold. 

If the difference between the actual and expected change in wheel speed of a 
reaction/momentum wheel is more than the threshold for at least three or more 
consecutive measurements, then that particular wheel is considered faulty. Check 
for consistency in fault identification for three consecutive measurements gives 
protection against transient malfunction of the wheel and spurious speed 
information. 

6.3 Reconfiguration and recovery 

If a reaction/momentum wheel is identified as faulty, then that particular wheel is 
switched off and a redundant wheel is enabled automatically to perform the 
function of the faulty wheel, with necessary modifications/changes in the 
controllers. Recovery from failures and resumption of normal performance is 
accomplished by the redundant wheel. 
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The faulty wheel that is switched off will decelerate very slowly because of its 
friction (natural run-down) giving very small disturbance torque to the spacecraft. 
The run-down may even continue for one or two hours if the wheel has been 
running near the maximum operating speed. However, this disturbance torque will 
be absorbed by the redundant wheel since its torquing capability is much higher 
than the disturbance torque generated during natural run-down. 

Although the fault detection and identification algorithm remains the same for 
various geometric arrangements of reaction/momentum wheels, the exact recon¬ 
figuration scheme varies depending on the physical arrangement and number of 
wheels. Further details are given in Murugesan (1981, 1985). 

7. Fault tolerance in the reaction control system 

A reaction control system (rcs) basically consists of a propellant tank, to store 
required propellant at high pressure, an electrically operated isolation valve and a 
set of thrusters in different physical locations on the spacecraft to generate required 
thrust and/or torque about a desired axis. Isolation valves are used to either block 
or allow the flow of propellant from storage tank to thrusters, by energising 
appropriate electromagnetic coils of the isolation valves. A thruster consists of a 
flow control valve (fcv) and a combustion chamber. When propellant passes 
through the combustion chamber, chemical reaction takes place generating a thrust 
through the nozzle. However, when FCV is not energised, the propellant flow to the 
combustion chamber is inhibited and hence, thrust is not developed. 

A reaction control system is used during various phases of a mission for attitude 
control during transfer orbit, spacecraft attitude acquisition, orbit correction 
(station-keeping) and momentum dumping operations. It uses stored propellant 
(fuel) for generation of thrust/torque, unlike the other actuators like reaction/ 
momentum wheels and magnetic torquers which make use of on-board generated 
solar power. Operation of RCS consumes propellants, thereby depleting the 
propellant available for further use. When propellant is completely depleted, RCS 

cannot generate any thrust eventually ending the useful life of the mission. Proper 
operation of RCS, without any additional depletion of propellant due to faults in the 
system is, therefore, essential for the success of a spacecraft mission. 

To avoid single point failures, generally, RCS has two sets of functionally 
redundant thrusters, a set of isolation valves and two propellant tanks (figure 10). 
Upon actuating signal from the attitude controller, thrusters develop the needed 
thrust/torque. Any one or both the blocks (block 1 and 2) can be enabled or 
disabled through ground commands. 

7.1 Failures in RCS and their effects 

In a reaction control system the critical and most probable source of failure is the 
thruster (flow control valve). Certain types of failures in RCS, apart from resulting 
in loss of spacecraft attitude, might completely deplete the propellant before any 
corrective action could be taken from the ground through telecommands. 

The large thrust developed by faulty thrusters, that are stuck-at-open or have a 
large leakage, cannot be compensated by reaction/momentum wheels used for 
attitude control during the normal phase of a mission. Eventually, these types of 



256 S Murugesan and P S Goel 

propellant propellant 
tank 1 tank 2 

block 1 block 2 

thrusters thrusters 

IV : isolation valves 

Figure 10. Schematic of a typical reaction control system. 

failures, if not corrected, result in rapid attitude error build-up and hence lead to 
loss of attitude, and more importantly, deplete the propellant, reducing the mission 
life and/or terminating the mission. 

Failures resulting in low leakage give continuous low-level thrust or torque, 
which can be compensated by reaction/momentum wheels used for the normal 
phase of operation. But, there would be more frequent momentum dumpings, due 
to excessive wheel speed build-up. Though small leakages may not result in 
appreciable attitude error, considerable amount of propellant may be depleted 
reducing the life of the mission. 

A stuck-at-close mode failure, however, does not generate disturbance torques, 
deplete the propellant or directly result in catastrophic effects. But, such a faulty 
thruster does not generate thrust/torque when required, and hence, ceases to 
perform its function of effectively correcting attitude errors and reducing the wheel 
speed when momentum dumping is carried out. 

7.2 Fault detection 

Detection and identification of a faulty thruster would have been quite simple if the 
actual thrust developed by each thruster is directly measured. Incorporation of 
transducers for thrust measurement is complex and adds to failure modes and 
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unreliability. Detection and identification of faulty thrusters has, therefore, to be 
based on indirect information such as overall attitude performance of the 
spacecraft. 

Stuck-at-open and large leakage failures result in rapid attitude error build-up 
and large attitude errors, and finally lead to loss of attitude. Fault detection based 
on attitude error rate alone, however, could be misleading and result in wrong 
interpretation, since attitude error rates could vary considerably during normal 
operation itself; for instance, between zero crossing and peak of the attitude errors 
that vary between positive and negative values in a limit cycle, and sudden external 
disturbances. On the other hand, a decision based on absolute error alone also 
could mislead, since excessive bias torque in reaction/momentum wheel results in 
large attitude error. These types of failures are, therefore, detected by comparing 
the rate of attitude error build-up and the absolute value of the attitude error with 
their upper limits. 

Low-level leakage of propellant gives a low bias thrust/torque. These disturb¬ 
ances can be counteracted by reaction/momentum wheels and/or thrusters and the 
controllers used for normal phase operations. Therefore, there may not be 
appreciable increase in attitude errors and their rate. Hence, these failures are 
detected based on on-board comparison of the ‘behaviour’ of controllers with the 
‘behaviour during failure-free operation. 

In a reaction-wheel-based control system, wherein reaction wheels are used for 
attitude control along all the three axes of a spacecraft, the disturbances due to 
low-level leakage lead to excessive wheel speed build-up since the wheels 
counteract these additional disturbances also. Hence, more frequent momentum 
dumpings than is needed during the normal failure-free operation would take 
place. Therefore, fault detection is based on the number of momentum dumping 
operations performed during a given duration. Though the detection time may be 
relatively large, it does not significantly affect the system performance and 
propellant depleted due to low-level leakage might not be much. 

In a momentum wheel system, by monitoring excessive momentum dumpings 
and roll corrections by thrusters over a given duration, low-level leakages in RCS 

are detected. In a hybrid system also low-level leakages in thrusters are detected by 
comparing the number of momentum dumping operations about pitch and roll axes 
for a given duration, with a threshold. 

Thrusters failing at the stuck-at-closed mode do not generate torque/thrust when 
required and hence controllers will not be able to effectively correct the attitude 
errors and reduce the wheel speed when the momentum dumping operation is 
carried out. Consequently attitude errors and wheel speed will exceed the normal 
limits. Thus, when sensors and control electronics are working properly, but 
attitude error and/or wheel speed corresponding to that function go beyond the 
normal limits, the reaction control system is considered faulty. 

7.3 Fault identification and reconfiguration 

When the isolation valves of block 1 are kept open and that of block 2 are closed, if 
the RCS is found faulty, then block 1 is faulty since the thrusters of block 2 cannot 
generate any thrust/torque when its isolation valves are closed. Hence, the 
isolation valves of block 1 are closed and an isolation valve of block 2 is opened, 
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thereby enabling the working of thrusters of block 2. Similar operations are carried 
out when isolation valves of block 2 are open, while that of block 1 are closed, and 
the RCS is found faulty. 

However, when isolation valves of both the thruster blocks 1 and 2 are open, it is 
not possible straightaway to identify the faulty thruster block and, therefore, a 
‘trial-and-error’ method is adopted. After failure detection, isolation valves of 
block 1 are closed, while that of block 2 remain open. If block 1 was faulty, there 
would not be any further increase in attitude rate and error, since the faulty 
thruster block 1 is disabled. On the other hand, if thruster block 2 is faulty, attitude 
error and/or wheel speed will further increase indicating that the fault still exists 
and the thruster block 2 is faulty. Then, the isolation valves of block 2 are closed 
and that of block 1 are opened, thereby enabling working of the failure-free 
thruster block and disabling the faulty one. 

Since momentum/reaction wheels and normal mode controllers might not be 
able to correct fairly large attitude errors and/or rates caused by faulty thrusters, 
attitude is controlled using thrusters for some time immediately after the 
autonomous reconfiguration of thrusters, then the normal mode is revived. 

8. Simulation results 

The proposed fault-tolerance schemes were validated through computer simula¬ 
tions. Attitude dynamics, sensors, controllers, reaction/momentum wheels and 
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i | | i-1 

o 100 200 300 S 
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Figure 11. Autoreconfiguration of the pitch wheel. 
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Table 2. Maximum attitude error before reconfiguration due to stuck-up 

failure in earth sensor ES. 

ESA stuck-up value 

(degree) 

A 

^max 

(degree) 

Detection time 

(5) 

0-0 0-50 20-0 

0-1 0-40 35-0 

0-2 0-30 37-5 

0-3 0-15 7-5 

0-5 0-15 7-5 

NOTE: (i) 0max is the absolute maximum attitude error before re¬ 

configuration; 

(ii) attitude error and rate when fault occurred were 0-1° and 0-01°/s, 

respectively. 

reaction control system were modelled on a digital computer, with provision to 
simulate different modes of failure of various subsystems. Performance of the 
fault-detection, identification and reconfiguration (fdir) algorithms and fault- 
tolerant system were studied under different failure modes and the performance is 
satisfactory. Some typical results are given in table 2 and figure 11. 

9. Conclusions 

With a discussion on the impact of failure of the attitude control system on services 
rendered by a spacecraft and on mission life, limitations of the existing systems that 
have redundancy, but need ground-station support for analyses of failures and 
subsequent remedial actions, are highlighted. The need for autonomous spacecraft 
attitude control system is emphasized and its essential features are formulated. 

Limitations of commonly used schemes for fault tolerance in computers for a 
real-time control system that consists of dual-redundant attitude sensors and 
actuators are presented. Though some isolated attempts, like schemes for fault 
tolerance in attitude reference system using gyros and some theoretical studies on 
fault detection in a system, were made, there was no comprehensive study to make 
the entire attitude control system fault-tolerant as yet. A comprehensive study on 
‘autonomous spacecraft attitude control system through reconfiguration’, covering 
various aspects of the system, is made. 

Newly developed autonomous FDIR schemes for dual-redundant earth sensors, 
attitude reference systems using gyros, reaction/momentum wheel systems and 
reaction control systems are presented. Also proposed is a new symmetrically- 
skewed configuration for an attitude reference system using three dynamically 
tuned-gyros; it has better features than the other configurations. 

The proposed schemes are general (or universal) in nature and could be applied 
to any spacecraft; further, they are relatively simple and hence, do not increase the 
hardware and software overhead on control electronics much. Also, they do not 
call for any modification in the already existing and space-proven sensors and 
actuators. Some of the schemes have already been used in Indian spacecraft. These 
schemes could be adopted for other applications also with minor modifications. 
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9.1 Further challenges 

Though this study covers all major failures in the various elements of attitude 
control systems that are very critical to a mission, aspects like excessive bias and 
scale factor errors, and rtpple/noise reaction torque from reaction/momentum 
wheels are not studied in detail; they could be taken up for detailed study. Also, the 
proposed scheme could be further studied with reference^to a specific mission for 
further refinement and extensive simulations could be carried out. 

In addition, the concept of artificial intelligence (Al) and ‘learning/expert 
systems’ could be exploited for autonomous on-board evaluation of system 
performance, decision-making and failure management. Systems that use Al 

concepts can observe and understand the ‘behaviour’ of the system, draw ‘reasoned 
conclusions’ from the observations and take appropriate decisions like human 
experts. 

As future space missions will directly cater to various applications on an 
operational basis, the ultimate objective is to have a totally fault-tolerant 
‘intelligent’ autonomous spacecraft. 

The authors thank Professor U R Rao, Shri N Pant, Dr K Kasturirangan, and 
Professor E V Krishnamurthy for motivating them, and for suggestions and guidance. 
They are also grateful to Professor N Viswanadham, Indian Institute of Science, for 
inviting them to contribute this paper and for his suggestions. The authors also 
acknowledge the assistance and cooperation of their colleagues in the Control 
Systems Division. 
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dynamically tuned gyros: 
threshold for error difference; 
upper limit for absolute error; 
Boolean variable; 
failure threshold; 
gain factor, Nm/s; 
moment of inertia of wheel; 
Boolean variable; 
pitch axis; 
parity equation residual; 
roll axis; 
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reaction torque; 
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measurement axis of a DTG; 
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output of a DTG; 

actual change in wheel speed; 

expected change in wheel speed; 

measurement noise; 

roll error; 

pitch error; 

yaw* error; 

smallest integer not less than x. 
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Abstract. The safety of operating nuclear power plants of the CANDU 

type is described in this paper. The need for a systematic study on these 
types of heavy water reactors similar to the safety studies done on light 
water reactors is brought out in this paper. Some of the work done on 
station blackout, operational transients, small and large break loss of 
coolant accidents is reviewed. Recent nuclear power plant accidents, 
namely Three-Mile Island-2 and Chernobyl, seem to indicate that an 
understanding of man-machine interaction and human behaviour under 
stress is important for the safety aspects and more work needs to be 
done in these areas. 

Keywords. Nuclear power plant; safety; reliability; probabilistic risk 
assessment; loss of coolant accident. 

1. Introduction 

This paper deals with some of the safety issues related to the pressure tube 
heavy-water-cooled, heavy-water-moderated and natural uranium fueled CANDU 

type reactors. This class of reactors is called Pressurised Heavy Water Reactors 
(phwr). Measures must be taken to ensure nuclear power plant safety during the 
various phases starting with ’site selection and design4, during ’construction4, and 
’commissioning4, and finally during the ’operation4 of the plant. Aspects of safety 
during operation is the topic of this paper. Power plant safety is aimed at protecting 
the workers, the public and the environment from potential adverse effects of 
radiation release resulting from failure of safety systems during operation. 

Nuclear power plants are safe as long as the energy release from fission reactors 
is controllable. For achieving this, the integrity of the fuel element, a reliable 
control system and the primary heat removal system are essential. The integrity of 
fuel elements is essential as 98% of the radioactive fission products are contained 

*To whom correspondence should be addressed. 263 
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by the cladding of the fuel element. The second and third lines of defence in 
preventing the release of radiation are the primary heat transport system and the 
containment building. Release of radioactive fission products poses a grave threat 
to public safety due to the biological effects of radiation exposure. The fuel element 
integrity is affected by radiation damage, thermal cycling, fission gas pressure 
build-up etc. Thus a study of the interactions between reactor physics (neutronics) 
and thermal hydraulics is quite important. A typical interaction is shown in figure 1. 

The various sources of energy in a nuclear power plant are the stored energy of 
the fuel, latent heat/sensible heat of the coolant, moderator and structures; decay 
heat, even after shutdown, due to fission products (nearly 7% of steady state 
immediately after shutdown); and chemical reactions of clad materials (zirconium, 
graphite and stainless steel) with water and steam at elevated temperatures 
releasing hydrogen. Besides these, the nuclear transients depending on the 
amplitude and rate of reactivity insertions release uncontrolled energy leading to 
fuel and clad melting or bursting, and fuel pin slumping. Such an event releases 
large quantities of fission gases as in the case of the Chernobyl, USSR, accident in 
1986. 
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2. Sources of radiation 

The concern in reactor accidents is regarding gaseous or volatile fission product 
radionuclides. Noble gases xenon and krypton do not pose a serious biological 
threat as they are inert. Volatile nuclides include iodine, bromine, cesium, 
rubidium, tellurium, serium and antimony. Only on vaporization of the fuel are 
significant amounts of Te, Se, Sb released. Their release due to fuel melt is small 
compared to the other volatile species. The so-called ’source ternT calculations are 
primarily concerned with isotopes of iodine 135I, 134I, 133I, 132I and 131I. Of these 131I 
is important from the biological aspect. The maximum permissible concentrations of 
this iodine isotope are 0.3 picocuries/cc in water and 0T x 10~3 picocuries/cc of 
air. 131I emits beta rays, 90% of the time with 0.606 MeV energy and also gamma 
rays, 82% of the time with 0.364 MeV energy. Lead of 3 mm thickness is required 
to reduce the radiation intensity by fifty percent. Typical inventories of fission 
product radionuclides in a thermal reactor are given in table 1. 

It can be seen from the table that iodine isotope inventories are several 
megacuries in a reactor. The potential release of iodine in an accident and the 
amount of dilution and diffusion required to bring the concentrations to 10“16 
curies/cc pose challenging problems in reactor safety. Release to the environment 
can be calculated by using the following expression. 

Release to environment = inventory in core x release fraction from 
fuel x release fraction from primary system x release fraction from containment. 

Thus the safety study involves the estimation of the fractional release due to 
failure of the engineered safety systems. It is estimated that in the Three-Mile 
Island-2 (tmi-2) accident an equivalent of 0.001% of 131I and in Chernobyl, inspite 
of a severe fire, only about 20% of 131I was released from the core inventory. 
Because of the primary system and containment integrity in tmi-2 only a very small 

fraction of this was released to the environment as borne out by field survey 
studies. 

Table 1. Fission products of significance in reactor accidents after one year of opera¬ 

tion at 3000 MW (Th). 

Inventory (MCi) 

At 1 day after 

Isotope Half-life shut-down shut-down Comment 

K9Sr 58 days 117 117 
Hazard to bone and lung 

9,lSr 28 years 3-6 3-6 

1311 8-1 days 75 69 
132J 2-3 hr 114 0 High volatility, hazard 
1331 21 hr 165 78 to the thyroid due to 
134 J 52 min 189 0 ingestion and inhalation 

1351 . 6-7 hr 165 13 

137Cs 26-6 yr 3-8 3-8 
Ingestion hazard to 

muscle (whole body) 

103 Ru 41 years. 77 77 
Hazard to kidney 

l,)6Ru 1 year 4-6 3-6 
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3. phwr systems safety 

Before issuing an operating license for CANDU reactors, two categories of failures 
are analysed from the safety point of view (Yaremy 1986a). 

The single failure category - analyses total failure of process systems, inspite of 
redundancy included in the design, leading to release of radioactivity. Safety 
systems are available. The dual failure category - analyses release of activity 
under total failure of process system and the safety systems. 

Some of the process systems may be broadly classified as: fuel and fuel handling; 
electrical system; reactor control; reactor components; coolant systems. 

The safety systems, often called engineered safety features (ESF), of a nuclear 
plant are: mechanical and liquid poison shut-down/moderator dumping; emer¬ 
gency core cooling; containment. 

It is customary to indicate process system and safety system failures in a tabular 

form to indicate the ’safety assessment matrix4 as shown in table 2. 
Some of the disadvantages of the single and dual failure approach are: 

(1) Difficulty in dealing with safety support system failures, such as electrical 
supply, instrument air, or service water, whose failure could result in common 
failure of a process system as well as a safety system. 
(2) Analysis of potential common-mode events such as earthquakes and aircraft 
crashes, which could affect both the systems. 
(3) The need to establish dependence on human involvement in accident 
management. 

Single and dual failure approach methods are supplemented by the safety design 
matrix approach wherein the initiating event is analysed in terms of the reliability of 
the individual components or components as building blocks. 

Because of the limitations mentioned of the single and dual failure approaches, 
probabilistic risk assessment (pra) or probabilistic safety analysis (PSA) methods 
are being applied to the PHWR systems. The application of PRA and the develop¬ 
ment of an appropriate database have not yet reached the state where individual 
licensing of PHWR is purely based on these statistical evaluations. 

4. Safety analysis 

Historically, safety issues were studied as early as 1957, when the theoretical 
possibilities and consequences of major accidents in large nuclear power plants 
were analysed in the WASH-740 (1957) report. Subsequently the BMI-1910 (1971) 
report for core melt-down evaluation was published. According to Yaremy (1986b) 
the Canadian authorities in 1975 used the safety design matrix approach to 
familiarise designers with the safety problems. Most of- these above studies 
are deterministic in nature and are based on classical approaches. When the 
WASH-1400 (1975) report on reactor safety study was published, it opened avenues 
for estimating the probability through the Bayesian approach. Whether it is a 
classical approach or the Bayesian approach, the steps involved in evaluating the 
occurrence probability of a top event by the probabilistic risk assessment (pra) or 
probabilistic safety analysis (PSA) are shown in figure 2. 
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Table 2. Safety assessment matrix (Yaremy 1986b). 
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Special safety systems 

Process failures 

Shut-down Emergency 

1 or 2 core cooling Containment 

Fuel and fuel handling 

Fuel failure in the core 

Fuel failures during fuel 

handling 

x x X X 

Electrical system 

Complete and partial loss 

of off-site and main 

generator power supplies 

x x x x 

Reactor control X X X X 

Reactivity disturbances 

from wrongful use of 

reactivity devices at 

both full and low power 

Foss of primary pressure 

control 

Foss of secondary 

pressure control 

Reactor components x x x x 

Flow blockage in a fuel 

channel 

Failure of primary heat 

transport system pump 

circulation 

Foss of shield cooling 

Foss of shut-down 

cooling 

Foss of service water 

Coolant systems xxx x 

Failure in the major 

pipes of the primary 

heat transport system 

Feeder failure 

End fitting failure 

Steam main failure 

Foss of feedwater supply 

etc. 

One of the significant conclusions of the WASH-1400 (1975) reactor safety study is 
that the risk to the public from nuclear power reactors arise primarily from core 
melt-down accidents. A committee was appointed to estimate the conservative or 
nonconservative nature of the results of the reactor safety study (Lewis 1978). 
Subsequent to the TMI-2 accident, there are several studies reevaluating the ‘source 
terms’ i.e. the inventory of radioactive sources which could be potentially released 
in an accident and it is believed that earlier calculations overestimated the release 
of the 131I isotope. 
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Figure 2. Event tree models, either classical or Bayesian. 

Quantifying the uncertainties based on ‘engineering judgement’ was suggested 
by Erdmann et al (1981). Engineering judgement is a rational way to quantify the 
knowledge accumulated by a specialist, and means exist to remove or minimize 
bias. When an expert uses engineering judgement to reach a quantified value for a 
parameter of interest, how for off is he and how wide is his range of uncertainty? 
Capen (1976) states that single judgements are less valuable than group averages, 
but he also states that the more expert the judges, the larger is the band of 
uncertainty they will assign. Recently mathematical models have benn developed 
(N D Singpurwala, private communication, 1986) for decision-making under 
uncertainty. These models include a correlation parameter (negative or positive) 
between two expert opinions, to help the analyst in making decisions. The 
proceedings of the international seminar on the role of data and judgement in 
probabilistic risk and safety analysis, published in Nuclear Engineering and Design 

(May 1986, Vol. 92, no. 2) contain several articles on this subject. 
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5. Safety assessment of Indian phwr 

The prime safety concern for any nuclear reactor is the event of core melt. Such an 
event is improbable if the primary coolant system is operating under normally 
designed conditions. Some of the safety features inherent in the phwr design are, 
low power density (12 kW/1) large moderator volume at nearly atmospheric 
pressure and low temperature (~70°C) acting as heat sink and an overall negative 
temperature coefficient of reactivity. The high pressure coolant (at 10 MPa and 
300°C) is distributed in several channels connected in two separate loops reducing 
the probability for total dry-out accident. Other incorporated engineered safety 
features include (i) reactivity control by two independent mechanisms namely 
electromechanical and (pneumatic) liquid poison shut-down, (ii) moderator dump 
for quick shut-down, (iii) poison injection into the moderator for reactivity 
control, (iv) double containment with a suppression pool (or dousing tank) to 
absorb the latent heat released in case of an accident, (v) emergency core cooiing 
facility containing both high pressure and low pressure injection options. 

Thus, safety analyses deal with the transients that affect the primary coolant 
system. For the present, the events are categorized under four broad headings and 
relevant analytical work carried out for Indian PHWR is outlined. 

Station blackout: Complete loss of off-site power results in the unavailability of the 
primary coolant pumps, thus seriously impairing the primary heat transport. The 
frequency of such an event for Indian conditions is reported to be around one every 
month. Thermal-hydraulic analysis carried out for such transients by Gupta et al 

(1986) indicates two alternate schemes to maintain system integrity. These are 
(a) use of natural circulation (thermosyphon) of primary coolant under bottled-up 
conditions (system kept full with coolant) capable of dissipating upto 12% of full 
power or (b) use of shut-down cooling system immediately following the transient. 

Operational transients: Many operational perturbations like reactivity ramp, load 
rejection etc. can be grouped in this category. The safety analysis for such events 
involve modelling of the system dynamics and control to follow the temperature 
rise in the core. Computational modelling of the transients has been carried out 
independently by the Reactor Group of the Bhabha Atomic Research Centre 
(BARC) and Tata Consulting Engineers (tce) (see Sastry & Jagannathan 1975). 
The results of these studies have been backed up by operational data from Atomic 
Power stations at Madras and Rajasthan respectively. 

Small break loss of coolant accident'. Post-Three-Mile-Island studies have clearly 
demonstrated that even a small breach in the primary system can lead to severe 
overheating of the core. The complete analysis of the events following small break 
loss of coolant accident (loca) for Indian reactors is yet to be computed. However, 
some of the complexities encountered in modelling have been outlined by Gupta et 

al (1986). Clearly more work is needed in this area. 

Large break LOCA: This classic problem of a double-ended break at the largest 

pipe is definitely the worst but quite an improbable event. Reactor research groups 
all over the world have analysed the thermal hydraulic events that follow such a 
happening and the adequacy of emergency cooling provided to prevent any core 
damage. Analysis for Indian PHWR has been carried out by Murthy et al (1985) and 
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MPa 

Figure 3. Pressure transient due to cold leg rupture for a 200 MW reactor. 

Bajaj & Malhotra (1985). A typical pressure response computed by Gupta et al 

(1986) is shown in figure 3. Some of the correlations used in modelling appear to 
have been developed for vertical geometries and are yet to be established for 
horizontal geometries encountered in Indian PHWR. Experimental efforts to 
generate data is under way (Venkatraj & Saha 1985) and one has to wait for the 
verification of computer codes. However, computation has also been extended to 
quantifying the containment loading and subsequent release of radioactivity 
following a large break LOCA (Bajaj 1986). 

These preliminary accident studies leading to core melt-down are essential to 
establish the probability of the top event. Besides the initiating events mentioned 
above, leading to the core melt-down, other initiating events of lesser consequences 
also need to be studied. The reliability of PHWR control by Electro Mechanical 
Shut-down Rods (EMSR) as well as Liquid Poison Rod (lpr) systems was studied by 
Sharma & Ram (1980) and the time-dependent unavailability results are given in 
table 3. 
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Table 3. Time-dependent unavailability, Q 

Target 

reliability 

R(t = 8760 hr) 

Weibull 

distribution 

scale parameter 

EMSR system 

Q(t = 720 hr) 

LPR system 

Q(t = 720 hr) 

Combined 

Q(t = 720 hr) 

0-90 26987-6 0-0324 0-0271 8-78 x 10~4 

0-99 87380-6 2-47 x 10~2 1-88 x HE2 4-17 x 1()-4 

0-999 276947-9 2-398 x 10“2 i-59i x ur2 3-815 x 10“4 

0-9999 876000-0 2-39 x H)-2 0-0158 3-766x 10“4 

R(t) = target reliability at the end of a year (t = 8760 hr) of a basic component under 

aging alone. 

Weibull distribution shape parameter = 2. 

Number of basic components 12 in EMSR: 16 in LPR affected by aging. 

A case study for the reliability of electric service supply system for the Madras 
Atomic Power Plant was carried out by Bhattacharya et al (1984, p. 316). The 
assessed unavailabilities and frequencies of failure of emergencv electric supplv are 
found to be within target values of 3 x 10-5 yrs/yr. Emergency electric supply is 

different from other safety systems as it is normally in the standby mode and comes 
in only when the emergency supply is called for. A beginning is made with 
systematic probabilistic safety assessment of the Indian PHWR (Babar & Kakodkar 
1986). 

6. Conclusions 

Both the TMI-2 and the Chernobyl accidents seem to indicate that operator error 
contributed to the serious consequences. The overall reliability of a system is 
affected because the men involved have some probability of performing their 
normal tasks incorrectly. Thus human reliability should form an integral part of 
reliability studies. Dhillon (1984, p. 188) has reviewed the work on human errors in 
engineering systems. Human-error probability is defined as the ratio of total 
amount of known errors of a given type to the total amount of opportunities for the 
error. This probability can vary from 0.003 to 0.5. Some of the human error 
prevention methods are man-machine system analysis, error cause removal 
program and quality circle formation. These studies are essential for safe and 
reliable operation of nuclear power plants. 

In a recent report (IAEA 1986) published on the Chernobyl accident, the need for 
a ‘nuclear safety culture’ in all operating nuclear power plants is stressed. The 
lessons learned from the accident imply three lines of action: 

(1) Training, with special emphasis on the need to acquire good understanding of 
the reactor- and its operation, and with the use of simulators giving a realistic 
representation of severe accident sequence. 
(2) Auditing, both internal and external to the utility, in particular to prevent 
complacency arising from routine operations. 
(3) Permanent awareness by all personnel of the safety implications of any 
deviation from the procedures. 
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This report also emphasizes the importance of a satisfactory man-machine 
interface. The Chernobyl and TMI accidents identify two lines of action: 

(1) The clear display to the operator of data vital to safety should be tailored to 
ensure optimum use. For a system as complex as a nuclear power plant, real-time 
data display and interpretation are important. Built-in diagnostic capability should 
be included. 
(2) Although ultimate reliance must rest on the operating staff and their 
comprehension of the system safety, the complexity of the nuclear power plant 
always requires that there be reliable safety back-up by way of automatic devices 
that ensure that the plant remains in safe operating territory in all respects. This 
back-up must be rapid by way of its logical structure and speed of response. It must 
be so designed as to be difficult to bypass, and so that normal or planned operation 
raises no temptation to bypass it. 

It is envisaged that application of Artificial Intelligence or expert systems will 
lead tq safer operation of nuclear power plants. 
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